Remove unused AudioDataset originally fetched from an upstream GigaAM/utils

This commit is contained in:
2025-12-03 16:53:17 +03:00
parent b1240d150d
commit 84e39be3ff

View File

@@ -14,44 +14,6 @@ DTYPE = np.float32
MAX_LETTERS_PER_FRAME = 3
class AudioDataset(torch.utils.data.Dataset):
"""
Helper class for creating batched inputs
"""
def __init__(self, lst: list[str | np.ndarray | torch.Tensor]):
if len(lst) == 0:
raise ValueError("AudioDataset cannot be initialized with an empty list")
assert isinstance(
lst[0], (str, np.ndarray, torch.Tensor)
), f"Unexpected dtype: {type(lst[0])}"
self.lst = lst
def __len__(self):
return len(self.lst)
def __getitem__(self, idx):
item = self.lst[idx]
if isinstance(item, str):
wav_tns = load_audio(item)
elif isinstance(item, np.ndarray):
wav_tns = torch.from_numpy(item)
elif isinstance(item, torch.Tensor):
wav_tns = item
else:
raise RuntimeError(f"Unexpected sample type: {type(item)} at idx={idx}")
return wav_tns
@staticmethod
def collate(wavs):
lengths = torch.tensor([len(wav) for wav in wavs])
max_len = lengths.max().item()
wav_tns = torch.zeros(len(wavs), max_len, dtype=wavs[0].dtype)
for idx, wav in enumerate(wavs):
wav_tns[idx, : wav.shape[-1]] = wav.squeeze()
return wav_tns, lengths
class ASRABCModel(abc.ABC):
encoder: ort.InferenceSession
preprocessor: FeatureExtractor