Compare commits

...

3 Commits

7 changed files with 257 additions and 29 deletions

View File

@@ -103,6 +103,49 @@ assert tst == 1
```
----
#### Сборка конвейеров преобразований:
Пусть, имеется несколько методов-потребителей, которые необходимо вызывать последовательно:
```python
from breakshaft.convertor import ConvRepo
repo = ConvRepo()
# Объявляем A и B, а также методы преобразований - как в прошлом примере
type cons2ret = str # избегаем использования builtin-типов, чтобы избежать простых коллизий
def consumer1(dep: A) -> B:
return B(float(42))
def consumer2(dep: B) -> cons2ret:
return str(dep.b)
def consumer3(dep: cons2ret) -> int:
return int(float(dep))
pipeline = repo.create_pipeline(
(B,),
[consumer1, consumer2, consumer3],
force_commutative=True,
allow_sync=True,
allow_async=False,
force_async=False
)
dat = pipeline(B(42))
assert dat == 42
```
----
#### Как получить граф преобразований:

View File

@@ -1,9 +1,10 @@
from __future__ import annotations
from typing import Optional, Callable, Unpack, TypeVarTuple, TypeVar, Awaitable, Any
from typing import Optional, Callable, Unpack, TypeVarTuple, TypeVar, Awaitable, Any, Sequence
from .graph_walker import GraphWalker
from .models import ConversionPoint, Callgraph
from .renderer import ConvertorRenderer, InTimeGenerationConvertorRenderer
from .util import extract_return_type
Tin = TypeVarTuple('Tin')
Tout = TypeVar('Tout')
@@ -27,6 +28,31 @@ class ConvRepo:
self.walker = graph_walker
self.renderer = renderer
def create_pipeline(self,
from_types: Sequence[type],
fns: Sequence[Callable],
force_commutative: bool = True,
allow_async: bool = True,
allow_sync: bool = True,
force_async: bool = False
):
filtered_injectors = self.filtered_injectors(allow_async, allow_sync)
pipeline_callseq = []
orig_from_types = tuple(from_types)
from_types = tuple(from_types)
for fn in fns:
injects = extract_return_type(fn)
callseq = self.get_callseq(filtered_injectors, frozenset(from_types), fn, force_commutative)
pipeline_callseq += callseq
if injects is not None:
from_types += (injects,)
return self.renderer.render(orig_from_types, pipeline_callseq, force_async=force_async)
@property
def convertor_set(self):
return self._convertor_set
@@ -46,15 +72,7 @@ class ConvRepo:
ret += [variant.injector]
return ret
def get_conversion(self,
from_types: tuple[type[Unpack[Tin]]],
fn: Callable[..., Tout],
force_commutative: bool = True,
allow_async: bool = True,
allow_sync: bool = True,
force_async: bool = False
) -> Callable[[Unpack[Tin]], Tout] | Awaitable[Callable[[Unpack[Tin]], Tout]]:
if not allow_async or force_async:
def filtered_injectors(self, allow_async: bool, allow_sync: bool) -> frozenset[ConversionPoint]:
filtered_injectors: frozenset[ConversionPoint] = frozenset()
for inj in self.convertor_set:
if inj.is_async and not allow_async:
@@ -62,14 +80,18 @@ class ConvRepo:
if not inj.is_async and not allow_sync:
continue
filtered_injectors |= {inj}
else:
filtered_injectors = frozenset(self.convertor_set)
return filtered_injectors
cg = self.walker.generate_callgraph(filtered_injectors, frozenset(from_types), fn)
def get_callseq(self,
injectors: frozenset[ConversionPoint],
from_types: frozenset[type], fn: Callable,
force_commutative: bool) -> list[ConversionPoint]:
cg = self.walker.generate_callgraph(injectors, from_types, fn)
if cg is None:
raise ValueError(f'Unable to compute conversion graph on {from_types}->{fn.__qualname__}')
exploded = self.walker.explode_callgraph_branches(cg, frozenset(from_types))
exploded = self.walker.explode_callgraph_branches(cg, from_types)
selected = self.walker.filter_exploded_callgraph_branch(exploded)
if len(selected) == 0:
@@ -79,6 +101,25 @@ class ConvRepo:
raise ValueError('Conversion path is not commutative')
callseq = self._callseq_from_callgraph(Callgraph(frozenset([selected[0]])))
if len(callseq) > 0:
injects = extract_return_type(fn)
callseq[-1] = callseq[-1].copy_with(injects=injects)
return callseq
def get_conversion(self,
from_types: Sequence[type[Unpack[Tin]]],
fn: Callable[..., Tout],
force_commutative: bool = True,
allow_async: bool = True,
allow_sync: bool = True,
force_async: bool = False
) -> Callable[[Unpack[Tin]], Tout] | Awaitable[Callable[[Unpack[Tin]], Tout]]:
filtered_injectors = self.filtered_injectors(allow_async, allow_sync)
callseq = self.get_callseq(filtered_injectors, frozenset(from_types), fn, force_commutative)
return self.renderer.render(from_types, callseq, force_async=force_async)
def mark_injector(self, *, rettype: Optional[type] = None):

View File

@@ -3,7 +3,7 @@ from types import NoneType
from typing import Callable, Optional
from .models import ConversionPoint, Callgraph, CallgraphVariant, TransformationPoint, CompositionDirection
from .util import extract_func_argtypes, all_combinations, extract_func_argtypes_seq
from .util import extract_func_argtypes, all_combinations, extract_func_argtypes_seq, extract_return_type
class GraphWalker:
@@ -15,6 +15,7 @@ class GraphWalker:
consumer_fn: Callable) -> Optional[Callgraph]:
branches: frozenset[Callgraph] = frozenset()
rettype = extract_return_type(consumer_fn)
# Хак, чтобы вынудить систему поставить первым преобразованием требуемый consumer
# Новый TypeAliasType каждый раз будет иметь эксклюзивный хэш, вне зависимости от содержимого

View File

@@ -20,6 +20,13 @@ class ConversionPoint:
requires: tuple[type, ...]
opt_args: tuple[type, ...]
def copy_with(self, **kwargs):
fn = kwargs.get('fn', self.fn)
injects = kwargs.get('injects', self.injects)
requires = kwargs.get('requires', self.requires)
opt_args = kwargs.get('opt_args', self.opt_args)
return ConversionPoint(fn, injects, requires, opt_args)
def __hash__(self):
return hash((self.fn, self.injects, self.requires))

View File

@@ -51,6 +51,28 @@ class ConversionArgRenderData:
typehash: str
def deduplicate_callseq(conversion_models: list[ConversionRenderData]) -> list[ConversionRenderData]:
deduplicated_conv_models: list[ConversionRenderData] = []
for conv_model in conversion_models:
if conv_model not in deduplicated_conv_models:
deduplicated_conv_models.append(conv_model)
continue
argnames = list(map(lambda x: x[1], conv_model.funcargs))
argument_changed = False
found_model = False
for m in deduplicated_conv_models:
if not found_model and m == conv_model:
found_model = True
if found_model and m.inj_hash in argnames:
argument_changed = True
break
if argument_changed:
deduplicated_conv_models.append(conv_model)
return deduplicated_conv_models
class InTimeGenerationConvertorRenderer(ConvertorRenderer):
templateLoader: jinja2.BaseLoader
templateEnv: jinja2.Environment
@@ -72,7 +94,7 @@ class InTimeGenerationConvertorRenderer(ConvertorRenderer):
force_async: bool = False) -> Callable:
fnmap = {}
conversion_models = []
conversion_models: list[ConversionRenderData] = []
ret_hash = 0
is_async = force_async
for call_id, call in enumerate(callseq):
@@ -84,12 +106,13 @@ class InTimeGenerationConvertorRenderer(ConvertorRenderer):
fnmap[hash(call.fn)] = call.fn
conv = ConversionRenderData.from_inj(call, provided_types)
if conv not in conversion_models:
conversion_models.append(conv)
if call.is_async:
is_async = True
ret_hash = hash(callseq[-1].injects)
conversion_models = deduplicate_callseq(conversion_models)
ret_hash = hashname(callseq[-1].injects)
conv_args = []
for i, from_type in enumerate(from_types):

View File

@@ -1,6 +1,11 @@
import inspect
from itertools import product
from typing import Callable, get_type_hints, TypeVar, Any
from typing import Callable, get_type_hints, TypeVar, Any, Optional
def extract_return_type(func: Callable) -> Optional[type]:
hints = get_type_hints(func)
return hints.get('return')
def extract_func_args(func: Callable) -> list[tuple[str, type]]:

108
tests/test_pipeline.py Normal file
View File

@@ -0,0 +1,108 @@
from dataclasses import dataclass
from src.breakshaft.convertor import ConvRepo
@dataclass
class A:
a: int
@dataclass
class B:
b: float
type optC = str
def test_default_consumer_args():
repo = ConvRepo()
@repo.mark_injector()
def b_to_a(b: B) -> A:
return A(int(b.b))
@repo.mark_injector()
def a_to_b(a: A) -> B:
return B(float(a.a))
@repo.mark_injector()
def int_to_a(i: int) -> A:
return A(i)
type ret1 = tuple[int, str]
def consumer1(dep: A, opt_dep: optC = '42') -> ret1:
return dep.a, opt_dep
def consumer2(dep: A, dep1: ret1) -> optC:
return str((dep.a, dep1))
p1 = repo.create_pipeline(
(B,),
[consumer1, consumer2],
force_commutative=True,
allow_sync=True,
allow_async=False,
force_async=False
)
res = p1(B(42.1))
assert res == "(42, (42, '42'))"
p2 = repo.create_pipeline(
(B,),
[consumer1, consumer2, consumer1],
force_commutative=True,
allow_sync=True,
allow_async=False,
force_async=False
)
res = p2(B(42.1))
assert res == (42, "(42, (42, '42'))")
def test_pipeline_with_subgraph_duplicates():
repo = ConvRepo()
b_to_a_calls = [0]
@repo.mark_injector()
def b_to_a(b: B) -> A:
b_to_a_calls[0] += 1
return A(int(b.b))
@repo.mark_injector()
def a_to_b(a: A) -> B:
return B(float(a.a))
@repo.mark_injector()
def int_to_a(i: int) -> A:
return A(i)
type ret1 = tuple[int, str]
cons1_calls = [0]
cons2_calls = [0]
def consumer1(dep: A, opt_dep: optC = '42') -> A:
cons1_calls[0] += 1
return A(dep.a + int(opt_dep))
def consumer2(dep: A) -> optC:
cons2_calls[0] += 1
return str(dep.a)
p1 = repo.create_pipeline(
(B,),
[consumer1, consumer2, consumer1, consumer2, consumer1, consumer2, consumer1, consumer2, consumer1],
force_commutative=True,
allow_sync=True,
allow_async=False,
force_async=False
)
res = p1(B(42.1))
assert res.a == 42 + (42 * 31)
assert b_to_a_calls[0] == 1
assert cons1_calls[0] == 5
assert cons2_calls[0] == 4