Initial commit

This commit is contained in:
2025-12-03 16:44:29 +03:00
commit 4f7f22e95f
15 changed files with 1693 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
.idea
__pycache__

98
README.md Normal file
View File

@@ -0,0 +1,98 @@
# GigaAM ASR for ONNX
## Project purpose:
Usage of a latest (v3) versions of a GigaAMASR without additional dependencies and localy stored models
## Project setup:
1. Set up original GigaAM project
```bash
# Clone original GigaAM repo:
git clone https://github.com/salute-developers/GigaAM
cd GigaAM
# Create temp venv:
python -m venv ./tmp_venv
source ./tmp_venv/bin/activate
# Install project:
pip install -e .
```
2. Acquire chosen models:
```python
import gigaam
onnx_dir = '/target/onnx/model/paths'
model_version = 'v3_ctc' # Options: v3_* models
model = gigaam.load_model(model_version)
model.to_onnx(dir_path=onnx_dir)
```
3. Fetch tokenizer SentencePieceProcessor model from cache
- From `~/.cache/gigaam/{model_name}_tokenizer.model`
- From `https://cdn.chatwm.opensmodel.sberdevices.ru/GigaAM/{model_name}_tokenizer.model`
4. Then you may remove original project:
```bash
cd ..
rm -r ./GigaAM
```
5. Install this (gigaam-onnx) project
6. Set up onnx runtime and load chosen model:
```python
import onnxruntime as ort
from gigaam_onnx import GigaAMV3E2ERNNT, GigaAMV3RNNT, GigaAMV3E2ECTC, GigaAMV3CTC
import numpy as np
# Set up ONNX runtime
if 'CUDAExecutionProvider' in ort.get_available_providers():
provider = 'CUDAExecutionProvider'
else:
provider = 'CPUExecutionProvider"
opts = ort.SessionOptions()
opts.intra_op_num_threads = 16
opts.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
opts.log_severity_level = 3
e2e_rnnt_model = GigaAMV3E2ERNNT(
'/path/to/onnx/files/v3_e2e_rnnt_decoder.onnx',
'/path/to/onnx/files/v3_e2e_rnnt_encoder.onnx',
'/path/to/onnx/files/v3_e2e_rnnt_joint.onnx',
'/path/to/onnx/files/v3_e2e_rnnt_tokenizer.model',
provider,
opts
)
rnnt_model = GigaAMV3RNNT(
'/path/to/onnx/files/v3_rnnt_decoder.onnx',
'/path/to/onnx/files/v3_rnnt_encoder.onnx',
'/path/to/onnx/files/v3_rnnt_joint.onnx',
provider,
opts
)
e2e_ctc_model = GigaAMV3E2ECTC(
'/path/to/onnx/files/v3_e2e_ctc.onnx',
'/path/to/onnx/files/v3_e2e_ctc_tokenizer.model',
provider,
opts
)
ctc_model = GigaAMV3CTC(
'/path/to/onnx/files/v3_ctc.onnx',
provider,
opts
)
# Load wav 16kHz mono PCM
wav_data = ...
audio_array = np.array(wav_data)
# Single fragment transcribing with per-char timings
text, timings = ctc_model.transcribe(audio_array)
# Batch transcribing with per-char timings
text, timings = e2e_ctc_model.transcribe_batch([audio_array])[0]
# Batch joined transcribing - joins fragments by lengts provided and returns continuous text with per-char timings
text, timings = e2e_rnnt_model.transcribe_batch(
[audio_array] # audio chunks
[1] # length of chunks to combine
)[0]
```

29
pyproject.toml Normal file
View File

@@ -0,0 +1,29 @@
[project]
name = "gigaam-onnx"
authors = [
{ name = "nikto_b", email = "niktob560@yandex.ru" }
]
license = "MIT"
version = "0.1.0"
description = "ONNX wrapper for a GigaAMASR models"
requires-python = ">=3.13"
dependencies = [
"hatchling>=1.28.0",
"numpy==2.*",
"onnxruntime==1.23.*",
"sentencepiece>=0.2.1",
"torch>=2.5,<2.9",
"torchaudio>=2.5,<2.9",
]
[dependency-groups]
dev = [
"scipy>=1.16.3",
]
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[tool.hatch.build.targets.wheel]
packages = ["src/gigaam_onnx"]

View File

182
src/gigaam_onnx/asr_abc.py Normal file
View File

@@ -0,0 +1,182 @@
import abc
import math
import numpy as np
import onnxruntime as ort
import torch
from torch.nn.utils.rnn import pad_sequence
from .preprocess import FeatureExtractor, load_audio
from .decoding import Tokenizer
DTYPE = np.float32
MAX_LETTERS_PER_FRAME = 3
class AudioDataset(torch.utils.data.Dataset):
"""
Helper class for creating batched inputs
"""
def __init__(self, lst: list[str | np.ndarray | torch.Tensor]):
if len(lst) == 0:
raise ValueError("AudioDataset cannot be initialized with an empty list")
assert isinstance(
lst[0], (str, np.ndarray, torch.Tensor)
), f"Unexpected dtype: {type(lst[0])}"
self.lst = lst
def __len__(self):
return len(self.lst)
def __getitem__(self, idx):
item = self.lst[idx]
if isinstance(item, str):
wav_tns = load_audio(item)
elif isinstance(item, np.ndarray):
wav_tns = torch.from_numpy(item)
elif isinstance(item, torch.Tensor):
wav_tns = item
else:
raise RuntimeError(f"Unexpected sample type: {type(item)} at idx={idx}")
return wav_tns
@staticmethod
def collate(wavs):
lengths = torch.tensor([len(wav) for wav in wavs])
max_len = lengths.max().item()
wav_tns = torch.zeros(len(wavs), max_len, dtype=wavs[0].dtype)
for idx, wav in enumerate(wavs):
wav_tns[idx, : wav.shape[-1]] = wav.squeeze()
return wav_tns, lengths
class ASRABCModel(abc.ABC):
encoder: ort.InferenceSession
preprocessor: FeatureExtractor
tokenizer: Tokenizer
blank_idx: int
def __init__(self, encoder: ort.InferenceSession, preprocessor: FeatureExtractor, tokenizer: Tokenizer):
self.encoder = encoder
self.preprocessor = preprocessor
self.tokenizer = tokenizer
self.blank_idx = len(self.tokenizer)
def transcribe(self, wav: np.ndarray) -> tuple[str, list[int]]:
return self.transcribe_batch([wav])[0]
def _transcribe_encode(self, input_signal: np.ndarray):
enc_inputs = {
node.name: data
for (node, data) in zip(
self.encoder.get_inputs(),
[input_signal.astype(DTYPE), [input_signal.shape[-1]]],
)
}
enc_features = self.encoder.run(
[node.name for node in self.encoder.get_outputs()], enc_inputs
)[0]
return enc_features
def _transcribe_encode_batch(self,
input_signals: np.ndarray,
input_lengths: np.ndarray) -> np.ndarray:
enc_inputs = {
node.name: data for (node, data) in zip(
self.encoder.get_inputs(),
[
input_signals.astype(DTYPE),
input_lengths
]
)
}
outputs = self.encoder.run(
[node.name for node in self.encoder.get_outputs()],
enc_inputs
)[0]
return outputs
def _transcribe_decode(self, features) -> tuple[list[int], list[int]]:
raise NotImplementedError()
def transcribe_batch(self,
wavs: list[np.ndarray],
join_batches: list[int] | None = None) -> list[tuple[str, list[int]]]:
input_lengths = []
processed_wavs = []
for wav in wavs:
audio_tensor = load_audio(wav)
processed = self.preprocessor(
audio_tensor.unsqueeze(0),
torch.tensor([audio_tensor.shape[-1]])
)[0]
if isinstance(processed, torch.Tensor):
processed = processed.cpu().numpy()
processed_wavs.append(processed)
input_lengths.append(processed.shape[2])
max_length = max(input_lengths)
batch_size = len(wavs)
features_dim = processed_wavs[0].shape[1]
padded_wavs = np.zeros((batch_size, features_dim, max_length), dtype=DTYPE)
for i, audio in enumerate(processed_wavs):
length = audio.shape[2]
padded_wavs[i, :, :length] = audio
input_lengths_array = np.array(input_lengths, dtype=np.int64)
features = self._transcribe_encode_batch(
padded_wavs,
input_lengths_array
)
if join_batches is None:
batch_token_ids = [self._transcribe_decode(features[i]) for i in range(batch_size)]
return [self.tokenizer.decode(ids) for ids in batch_token_ids]
else:
ret = []
start_idx = 0
for batch_len in join_batches:
end_idx = start_idx + batch_len
batch_features_list = []
batch_lengths = input_lengths_array[start_idx:end_idx]
for i in range(batch_len):
idx = start_idx + i
real_length = batch_lengths[i]
real_features = features[idx, :, :real_length]
batch_features_list.append(real_features)
concatenated_features = []
total_time = 0
for i, real_features in enumerate(batch_features_list):
concatenated_features.append(real_features)
total_time += real_features.shape[1]
seg_features_2d = np.concatenate(concatenated_features, axis=1)
seg_features = seg_features_2d[np.newaxis, :, :]
token_ids, token_timings = self._transcribe_decode(seg_features)
rate = (sum(list(map(len, wavs[start_idx:end_idx]))) / 16000) / max(token_timings)
result_text, out_timings = self.tokenizer.decode((token_ids, token_timings))
norm_out_timings = list(map(lambda x: x * rate, out_timings))
ret.append((result_text, norm_out_timings))
start_idx = end_idx
return ret

34
src/gigaam_onnx/ctc.py Normal file
View File

@@ -0,0 +1,34 @@
import numpy as np
import torch
from .preprocess import FeatureExtractor, load_audio
from .decoding import CTCGreedyDecoding, Tokenizer
import onnxruntime as ort
from .asr_abc import ASRABCModel
class CTCASR(ASRABCModel):
preprocessor: FeatureExtractor
encoder: ort.InferenceSession
def __init__(
self,
preprocessor: FeatureExtractor,
tokenizer: Tokenizer,
encoder: ort.InferenceSession
):
super().__init__(encoder, preprocessor, tokenizer)
def _transcribe_decode(self, features) -> tuple[list[int], list[int]]:
token_ids = []
prev_token = self.blank_idx
timings = []
while len(features.shape) > 2:
features = features[0]
for i, tok in enumerate(features.argmax(0).squeeze().tolist()):
if (tok != prev_token or prev_token == self.blank_idx) and tok < self.blank_idx:
token_ids.append(tok)
timings.append(i)
prev_token = tok
return token_ids, timings

133
src/gigaam_onnx/decoder.py Normal file
View File

@@ -0,0 +1,133 @@
# Mostly based on https://github.com/salute-developers/GigaAM/blame/bd77657d48f73633ed1d237ce0d6f99108f3c875/gigaam/decoder.py
# Original authors:
# - https://github.com/georgygospodinov
# - https://github.com/Alexander4127
from typing import Dict, List, Optional, Tuple
import torch
from torch import Tensor, nn
class CTCHead(nn.Module):
"""
CTC Head module for Connectionist Temporal Classification.
"""
def __init__(self, feat_in: int, num_classes: int):
super().__init__()
self.decoder_layers = torch.nn.Sequential(
torch.nn.Conv1d(feat_in, num_classes, kernel_size=1)
)
def forward(self, encoder_output: Tensor) -> Tensor:
return torch.nn.functional.log_softmax(
self.decoder_layers(encoder_output).transpose(1, 2), dim=-1
)
class RNNTJoint(nn.Module):
"""
RNN-Transducer Joint Network Module.
This module combines the outputs of the encoder and the prediction network using
a linear transformation followed by ReLU activation and another linear projection.
"""
def __init__(
self, enc_hidden: int, pred_hidden: int, joint_hidden: int, num_classes: int
):
super().__init__()
self.enc_hidden = enc_hidden
self.pred_hidden = pred_hidden
self.pred = nn.Linear(pred_hidden, joint_hidden)
self.enc = nn.Linear(enc_hidden, joint_hidden)
self.joint_net = nn.Sequential(nn.ReLU(), nn.Linear(joint_hidden, num_classes))
def joint(self, encoder_out: Tensor, decoder_out: Tensor) -> Tensor:
"""
Combine the encoder and prediction network outputs into a joint representation.
"""
enc = self.enc(encoder_out).unsqueeze(2)
pred = self.pred(decoder_out).unsqueeze(1)
return self.joint_net(enc + pred).log_softmax(-1)
def input_example(self) -> Tuple[Tensor, Tensor]:
device = next(self.parameters()).device
enc = torch.zeros(1, self.enc_hidden, 1)
dec = torch.zeros(1, self.pred_hidden, 1)
return enc.float().to(device), dec.float().to(device)
def input_names(self) -> List[str]:
return ["enc", "dec"]
def output_names(self) -> List[str]:
return ["joint"]
def forward(self, enc: Tensor, dec: Tensor) -> Tensor:
return self.joint(enc.transpose(1, 2), dec.transpose(1, 2))
class RNNTDecoder(nn.Module):
"""
RNN-Transducer Decoder Module.
This module handles the prediction network part of the RNN-Transducer architecture.
"""
def __init__(self, pred_hidden: int, pred_rnn_layers: int, num_classes: int):
super().__init__()
self.blank_id = num_classes - 1
self.pred_hidden = pred_hidden
self.embed = nn.Embedding(num_classes, pred_hidden, padding_idx=self.blank_id)
self.lstm = nn.LSTM(pred_hidden, pred_hidden, pred_rnn_layers)
def predict(
self,
x: Optional[Tensor],
state: Optional[Tensor],
batch_size: int = 1,
) -> Tuple[Tensor, Tensor]:
"""
Make predictions based on the current input and previous states.
If no input is provided, use zeros as the initial input.
"""
if x is not None:
emb: Tensor = self.embed(x)
else:
emb = torch.zeros(
(batch_size, 1, self.pred_hidden), device=next(self.parameters()).device
)
g, hid = self.lstm(emb.transpose(0, 1), state)
return g.transpose(0, 1), hid
def input_example(self) -> Tuple[Tensor, Tensor, Tensor]:
device = next(self.parameters()).device
label = torch.tensor([[0]]).to(device)
hidden_h = torch.zeros(1, 1, self.pred_hidden).to(device)
hidden_c = torch.zeros(1, 1, self.pred_hidden).to(device)
return label, hidden_h, hidden_c
def input_names(self) -> List[str]:
return ["x", "h", "c"]
def output_names(self) -> List[str]:
return ["dec", "h", "c"]
def forward(self, x: Tensor, h: Tensor, c: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
"""
ONNX-specific forward with x, state = (h, c) -> x, h, c.
"""
emb = self.embed(x)
g, (h, c) = self.lstm(emb.transpose(0, 1), (h, c))
return g.transpose(0, 1), h, c
class RNNTHead(nn.Module):
"""
RNN-Transducer Head Module.
This module combines the decoder and joint network components of the RNN-Transducer architecture.
"""
def __init__(self, decoder: Dict[str, int], joint: Dict[str, int]):
super().__init__()
self.decoder = RNNTDecoder(**decoder)
self.joint = RNNTJoint(**joint)

181
src/gigaam_onnx/decoding.py Normal file
View File

@@ -0,0 +1,181 @@
# Mostly based on https://github.com/salute-developers/GigaAM/blob/bd77657d48f73633ed1d237ce0d6f99108f3c875/gigaam/decoding.py
# Original authors:
# - https://github.com/georgygospodinov
# - https://github.com/Alexander4127
# - https://github.com/sverdoot
from typing import List, Optional, Tuple
import torch
from sentencepiece import SentencePieceProcessor
from torch import Tensor
from .decoder import CTCHead, RNNTHead
class Tokenizer:
"""
Tokenizer for converting between text and token IDs.
The tokenizer can operate either character-wise or using a pre-trained SentencePiece model.
"""
def __init__(self, vocab: List[str], model_path: Optional[str] = None):
self.charwise = model_path is None
if self.charwise:
self.vocab = vocab
else:
self.model = SentencePieceProcessor()
self.model.load(model_path)
def decode(self, tokens: tuple[list[int], list[int]]) -> tuple[str, list[int]]:
"""
Convert a list of token IDs back to a string.
"""
tokens, timings = tokens
if self.charwise:
return "".join(self.vocab[tok] for tok in tokens), timings
pieces = self.model.id_to_piece(tokens)
ret = ''
out_timings = []
for piece, time in zip(pieces, timings):
space = ''
while piece.startswith(''):
piece = piece[1:]
space = ' '
ret += space + piece
out_timings += [time] * (len(space) + len(piece))
return ret, out_timings
def __len__(self):
"""
Get the total number of tokens in the vocabulary.
"""
return len(self.vocab) if self.charwise else len(self.model)
class CTCGreedyDecoding:
"""
Class for performing greedy decoding of CTC outputs.
"""
def __init__(self, vocabulary: List[str], model_path: Optional[str] = None):
self.tokenizer = Tokenizer(vocabulary, model_path)
self.blank_id = len(self.tokenizer)
@torch.inference_mode()
def decode(self, head: CTCHead, encoded: Tensor, lengths: Tensor) -> List[str]:
"""
Decode the output of a CTC model into a list of hypotheses.
"""
log_probs = head(encoder_output=encoded)
assert (
len(log_probs.shape) == 3
), f"Expected log_probs shape {log_probs.shape} == [B, T, C]"
b, _, c = log_probs.shape
assert (
c == len(self.tokenizer) + 1
), f"Num classes {c} != len(vocab) + 1 {len(self.tokenizer) + 1}"
labels = log_probs.argmax(dim=-1, keepdim=False)
skip_mask = labels != self.blank_id
skip_mask[:, 1:] = torch.logical_and(
skip_mask[:, 1:], labels[:, 1:] != labels[:, :-1]
)
for length in lengths:
skip_mask[length:] = 0
pred_texts: List[str] = []
for i in range(b):
pred_texts.append(
"".join(self.tokenizer.decode(labels[i][skip_mask[i]].cpu().tolist()))
)
return pred_texts
class RNNTGreedyDecoding:
def __init__(
self,
vocabulary: List[str],
model_path: Optional[str] = None,
max_symbols_per_step: int = 10,
):
"""
Class for performing greedy decoding of RNN-T outputs.
"""
self.tokenizer = Tokenizer(vocabulary, model_path)
self.blank_id = len(self.tokenizer)
self.max_symbols = max_symbols_per_step
def _greedy_decode(self, head: RNNTHead, x: Tensor, seqlen: Tensor) -> str:
"""
Internal helper function for performing greedy decoding on a single sequence.
"""
hyp: List[int] = []
dec_state: Optional[Tensor] = None
last_label: Optional[Tensor] = None
for t in range(seqlen):
f = x[t, :, :].unsqueeze(1)
not_blank = True
new_symbols = 0
while not_blank and new_symbols < self.max_symbols:
g, hidden = head.decoder.predict(last_label, dec_state)
k = head.joint.joint(f, g)[0, 0, 0, :].argmax(0).item()
if k == self.blank_id:
not_blank = False
else:
hyp.append(int(k))
dec_state = hidden
last_label = torch.tensor([[hyp[-1]]]).to(x.device)
new_symbols += 1
return self.tokenizer.decode(hyp)
@torch.inference_mode()
def _greedy_decode(self,
head: RNNTHead,
x: Tensor,
seqlen: Tensor,
topk: int = 10) -> Tuple[str, List[float]]:
"""
Internal helper function for performing greedy decoding on a single sequence.
"""
hyp: List[int] = []
confidences: List[float] = []
dec_state: Optional[Tensor] = None
last_label: Optional[Tensor] = None
for t in range(seqlen):
f = x[t, :, :].unsqueeze(1)
is_blank = False
new_symbols = 0
while not is_blank and new_symbols < self.max_symbols:
g, hidden = head.decoder.predict(last_label, dec_state)
logits = head.joint.joint(f, g)[0, 0, 0, :]
probs = torch.softmax(logits, dim=0)
# was: argmax for top prob token
k = torch.argmax(probs).item()
confidence = probs[k].item()
# became: top k items, and top-1 extraction
if k == self.blank_id:
is_blank = True
else:
confidences.append(probs[k].item())
hyp.append(k)
dec_state = hidden
last_label = torch.tensor([[hyp[-1]]]).to(x.device)
new_symbols += 1
tokenized = self.tokenizer.decode(hyp)
return tokenized, confidences
def decode(self, head: RNNTHead, encoded: Tensor, enc_len: Tensor) -> List[Tuple[str, List[float]]]:
"""
Decode the output of an RNN-T model into a list of hypotheses.
"""
b = encoded.shape[0]
pred_texts = []
encoded = encoded.transpose(1, 2)
for i in range(b):
inseq = encoded[i, :, :].unsqueeze(1)
pred_texts.append(self._greedy_decode(head, inseq, enc_len[i]))
return pred_texts

View File

@@ -0,0 +1,91 @@
# Mostly based on https://github.com/salute-developers/GigaAM/blame/bd77657d48f73633ed1d237ce0d6f99108f3c875/gigaam/preprocess.py
# Original authors:
# - https://github.com/georgygospodinov
# - https://github.com/Alexander4127
from typing import Tuple
import numpy as np
import torch
import torchaudio
from torch import Tensor, nn
SAMPLE_RATE = 16000
def load_audio(src: np.ndarray, sample_rate: int = SAMPLE_RATE) -> Tensor:
"""
Load an audio file and resample it to the specified sample rate.
"""
if len(src) <= 0:
raise ValueError('Empty file provided')
audio_np = src
if audio_np.dtype == np.float32:
return torch.frombuffer(audio_np.tobytes(), dtype=torch.float32).float()
elif audio_np.dtype == np.float16:
return torch.frombuffer(audio_np.tobytes(), dtype=torch.float16).float()
elif audio_np.dtype == np.float64:
return torch.frombuffer(audio_np.tobytes(), dtype=torch.float64).float()
else:
audio_np = audio_np.astype(np.int16)
return torch.frombuffer(audio_np.tobytes(), dtype=torch.int16).float() / 32768.0
class SpecScaler(nn.Module):
"""
Module that applies logarithmic scaling to spectrogram values.
This module clamps the input values within a certain range and then applies a natural logarithm.
"""
def forward(self, x: Tensor) -> Tensor:
return torch.log(x.clamp_(1e-9, 1e9))
class FeatureExtractor(nn.Module):
"""
Module for extracting Log-mel spectrogram features from raw audio signals.
This module uses Torchaudio's MelSpectrogram transform to extract features
and applies logarithmic scaling.
"""
def __init__(self, sample_rate: int, features: int, **kwargs):
super().__init__()
self.hop_length = kwargs.get("hop_length", sample_rate // 100)
self.win_length = kwargs.get("win_length", sample_rate // 40)
self.n_fft = kwargs.get("n_fft", sample_rate // 40)
self.center = kwargs.get("center", True)
self.featurizer = nn.Sequential(
torchaudio.transforms.MelSpectrogram(
sample_rate=sample_rate,
n_mels=features,
win_length=self.win_length,
hop_length=self.hop_length,
n_fft=self.n_fft,
center=self.center,
),
SpecScaler(),
)
def out_len(self, input_lengths: Tensor) -> Tensor:
"""
Calculates the output length after the feature extraction process.
"""
if self.center:
return (
input_lengths.div(self.hop_length, rounding_mode="floor").add(1).long()
)
else:
return (
(input_lengths - self.win_length)
.div(self.hop_length, rounding_mode="floor")
.add(1)
.long()
)
def forward(self, input_signal: Tensor, length: Tensor) -> Tuple[Tensor, Tensor]:
"""
Extract Log-mel spectrogram features from the input audio signal.
"""
return self.featurizer(input_signal), self.out_len(length)

70
src/gigaam_onnx/rnnt.py Normal file
View File

@@ -0,0 +1,70 @@
import numpy as np
import onnxruntime as ort
from .asr_abc import ASRABCModel, DTYPE, MAX_LETTERS_PER_FRAME
from .decoding import RNNTHead, Tokenizer
from .preprocess import FeatureExtractor
class RNNTASR(ASRABCModel):
head: RNNTHead
predictor: ort.InferenceSession
jointer: ort.InferenceSession
def __init__(
self,
preprocessor: FeatureExtractor,
tokenizer: Tokenizer,
head: RNNTHead,
encoder: ort.InferenceSession,
predictor: ort.InferenceSession,
jointer: ort.InferenceSession,
):
self.head = head
self.predictor = predictor
self.jointer = jointer
super().__init__(encoder, preprocessor, tokenizer)
def _transcribe_decode(self, features) -> tuple[list[int], list[int]]:
token_ids = []
timings = []
prev_token = self.blank_idx
pred_states = [
np.zeros(shape=(1, 1, self.head.decoder.pred_hidden), dtype=DTYPE),
np.zeros(shape=(1, 1, self.head.decoder.pred_hidden), dtype=DTYPE),
]
for j in range(features.shape[-1]):
emitted_letters = 0
while emitted_letters < MAX_LETTERS_PER_FRAME:
pred_inputs = {
node.name: data
for (node, data) in zip(
self.predictor.get_inputs(), [np.array([[prev_token]])] + pred_states
)
}
pred_outputs = self.predictor.run(
[node.name for node in self.predictor.get_outputs()], pred_inputs
)
joint_inputs = {
node.name: data
for node, data in zip(
self.jointer.get_inputs(),
[features[:, :, [j]], pred_outputs[0].swapaxes(1, 2)],
)
}
log_probs = self.jointer.run(
[node.name for node in self.jointer.get_outputs()], joint_inputs
)
token = log_probs[0].argmax(-1)[0][0]
if token != self.blank_idx:
prev_token = int(token)
pred_states = pred_outputs[1:]
token_ids.append(int(token))
timings.append(j)
emitted_letters += 1
else:
break
return token_ids, timings

66
src/gigaam_onnx/v3_ctc.py Normal file
View File

@@ -0,0 +1,66 @@
import numpy as np
from .preprocess import FeatureExtractor, load_audio
import onnxruntime as rt
from .decoding import CTCGreedyDecoding, Tokenizer
from .ctc import CTCASR
_CTC_VOCAB = [
' ',
'а',
'б',
'в',
'г',
'д',
'е',
'ж',
'з',
'и',
'й',
'к',
'л',
'м',
'н',
'о',
'п',
'р',
'с',
'т',
'у',
'ф',
'х',
'ц',
'ч',
'ш',
'щ',
'ъ',
'ы',
'ь',
'э',
'ю',
'я',
]
class GigaAMV3CTC(CTCASR):
preprocessor: FeatureExtractor
model_path: str
decoding: CTCGreedyDecoding
def __init__(self, model_path: str, provider: str, opts: rt.SessionOptions):
self.model_path = model_path
preprocessor = FeatureExtractor(
sample_rate=16000,
features=64,
win_length=320,
hop_length=160,
mel_scale='htk',
n_fft=320,
mel_norm=None,
center=False
)
tokenizer = Tokenizer(_CTC_VOCAB)
encoder = rt.InferenceSession(self.model_path, providers=[provider], sess_options=opts)
super().__init__(preprocessor, tokenizer, encoder)

View File

@@ -0,0 +1,27 @@
import onnxruntime as rt
from .ctc import CTCASR
from .preprocess import FeatureExtractor
from .decoding import Tokenizer
class GigaAMV3E2ECTC(CTCASR):
model_path: str
tokenizer_path: str
def __init__(self, model_path: str, tokenizer_path: str, provider: str, opts: rt.SessionOptions):
self.model_path = model_path
self.tokenizer_path = tokenizer_path
preprocessor = FeatureExtractor(
sample_rate=16000,
features=64,
win_length=320,
hop_length=160,
mel_scale='htk',
n_fft=320,
mel_norm=None,
center=False
)
tokenizer = Tokenizer([], self.tokenizer_path)
encoder = rt.InferenceSession(self.model_path, providers=[provider], sess_options=opts)
super().__init__(preprocessor, tokenizer, encoder)

View File

@@ -0,0 +1,57 @@
import onnxruntime as rt
from .decoder import RNNTHead
from .decoding import Tokenizer
from .preprocess import FeatureExtractor
from .rnnt import RNNTASR
class GigaAMV3E2ERNNT(RNNTASR):
model_decoder_path: str
model_encoder_path: str
model_joint_path: str
tokenizer_path: str
def __init__(
self,
model_decoder_path: str,
model_encoder_path: str,
model_joint_path: str,
tokenizer_path: str,
provider: str,
opts: rt.SessionOptions
):
self.model_decoder_path = model_decoder_path
self.model_encoder_path = model_encoder_path
self.model_joint_path = model_joint_path
self.tokenizer_path = tokenizer_path
preprocessor = FeatureExtractor(
sample_rate=16000,
features=64,
win_length=320,
hop_length=160,
mel_scale='htk',
n_fft=320,
mel_norm=None,
center=False
)
tokenizer = Tokenizer([], self.tokenizer_path)
encoder = rt.InferenceSession(self.model_encoder_path, providers=[provider], sess_options=opts)
predictor = rt.InferenceSession(self.model_decoder_path, providers=[provider], sess_options=opts)
jointer = rt.InferenceSession(self.model_joint_path, providers=[provider], sess_options=opts)
head = RNNTHead(
{
'pred_hidden': 320,
'pred_rnn_layers': 1,
'num_classes': 1025,
},
{
'enc_hidden': 768,
'pred_hidden': 320,
'joint_hidden': 320,
'num_classes': 1025,
}
)
super().__init__(preprocessor, tokenizer, head, encoder, predictor, jointer)

View File

@@ -0,0 +1,91 @@
import numpy as np
import onnxruntime as rt
from .decoder import RNNTHead
from .decoding import Tokenizer
from .preprocess import FeatureExtractor
from .rnnt import RNNTASR
_RNNT_VOCAB = [
' ',
'а',
'б',
'в',
'г',
'д',
'е',
'ж',
'з',
'и',
'й',
'к',
'л',
'м',
'н',
'о',
'п',
'р',
'с',
'т',
'у',
'ф',
'х',
'ц',
'ч',
'ш',
'щ',
'ъ',
'ы',
'ь',
'э',
'ю',
'я',
]
class GigaAMV3RNNT(RNNTASR):
model_decoder_path: str
model_encoder_path: str
model_joint_path: str
def __init__(
self,
model_decoder_path: str,
model_encoder_path: str,
model_joint_path: str,
provider: str,
opts: rt.SessionOptions
):
self.model_decoder_path = model_decoder_path
self.model_encoder_path = model_encoder_path
self.model_joint_path = model_joint_path
preprocessor = FeatureExtractor(
sample_rate=16000,
features=64,
win_length=320,
hop_length=160,
mel_scale='htk',
n_fft=320,
mel_norm=None,
center=False
)
tokenizer = Tokenizer(_RNNT_VOCAB)
encoder = rt.InferenceSession(self.model_encoder_path, providers=[provider], sess_options=opts)
predictor = rt.InferenceSession(self.model_decoder_path, providers=[provider], sess_options=opts)
jointer = rt.InferenceSession(self.model_joint_path, providers=[provider], sess_options=opts)
head = RNNTHead(
{
'pred_hidden': 320,
'pred_rnn_layers': 1,
'num_classes': 34,
},
{
'enc_hidden': 768,
'pred_hidden': 320,
'joint_hidden': 320,
'num_classes': 34,
}
)
super().__init__(preprocessor, tokenizer, head, encoder, predictor, jointer)

632
uv.lock generated Normal file
View File

@@ -0,0 +1,632 @@
version = 1
revision = 3
requires-python = ">=3.13"
[[package]]
name = "coloredlogs"
version = "15.0.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "humanfriendly" },
]
sdist = { url = "https://files.pythonhosted.org/packages/cc/c7/eed8f27100517e8c0e6b923d5f0845d0cb99763da6fdee00478f91db7325/coloredlogs-15.0.1.tar.gz", hash = "sha256:7c991aa71a4577af2f82600d8f8f3a89f936baeaf9b50a9c197da014e5bf16b0", size = 278520, upload-time = "2021-06-11T10:22:45.202Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a7/06/3d6badcf13db419e25b07041d9c7b4a2c331d3f4e7134445ec5df57714cd/coloredlogs-15.0.1-py2.py3-none-any.whl", hash = "sha256:612ee75c546f53e92e70049c9dbfcc18c935a2b9a53b66085ce9ef6a6e5c0934", size = 46018, upload-time = "2021-06-11T10:22:42.561Z" },
]
[[package]]
name = "filelock"
version = "3.20.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/58/46/0028a82567109b5ef6e4d2a1f04a583fb513e6cf9527fcdd09afd817deeb/filelock-3.20.0.tar.gz", hash = "sha256:711e943b4ec6be42e1d4e6690b48dc175c822967466bb31c0c293f34334c13f4", size = 18922, upload-time = "2025-10-08T18:03:50.056Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/76/91/7216b27286936c16f5b4d0c530087e4a54eead683e6b0b73dd0c64844af6/filelock-3.20.0-py3-none-any.whl", hash = "sha256:339b4732ffda5cd79b13f4e2711a31b0365ce445d95d243bb996273d072546a2", size = 16054, upload-time = "2025-10-08T18:03:48.35Z" },
]
[[package]]
name = "flatbuffers"
version = "25.9.23"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/9d/1f/3ee70b0a55137442038f2a33469cc5fddd7e0ad2abf83d7497c18a2b6923/flatbuffers-25.9.23.tar.gz", hash = "sha256:676f9fa62750bb50cf531b42a0a2a118ad8f7f797a511eda12881c016f093b12", size = 22067, upload-time = "2025-09-24T05:25:30.106Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ee/1b/00a78aa2e8fbd63f9af08c9c19e6deb3d5d66b4dda677a0f61654680ee89/flatbuffers-25.9.23-py2.py3-none-any.whl", hash = "sha256:255538574d6cb6d0a79a17ec8bc0d30985913b87513a01cce8bcdb6b4c44d0e2", size = 30869, upload-time = "2025-09-24T05:25:28.912Z" },
]
[[package]]
name = "fsspec"
version = "2025.10.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/24/7f/2747c0d332b9acfa75dc84447a066fdf812b5a6b8d30472b74d309bfe8cb/fsspec-2025.10.0.tar.gz", hash = "sha256:b6789427626f068f9a83ca4e8a3cc050850b6c0f71f99ddb4f542b8266a26a59", size = 309285, upload-time = "2025-10-30T14:58:44.036Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl", hash = "sha256:7c7712353ae7d875407f97715f0e1ffcc21e33d5b24556cb1e090ae9409ec61d", size = 200966, upload-time = "2025-10-30T14:58:42.53Z" },
]
[[package]]
name = "gigaam-onnx"
version = "0.1.0"
source = { editable = "." }
dependencies = [
{ name = "hatchling" },
{ name = "numpy" },
{ name = "onnxruntime" },
{ name = "sentencepiece" },
{ name = "torch" },
{ name = "torchaudio" },
]
[package.dev-dependencies]
dev = [
{ name = "scipy" },
]
[package.metadata]
requires-dist = [
{ name = "hatchling", specifier = ">=1.28.0" },
{ name = "numpy", specifier = "==2.*" },
{ name = "onnxruntime", specifier = "==1.23.*" },
{ name = "sentencepiece", specifier = ">=0.2.1" },
{ name = "torch", specifier = ">=2.5,<2.9" },
{ name = "torchaudio", specifier = ">=2.5,<2.9" },
]
[package.metadata.requires-dev]
dev = [{ name = "scipy", specifier = ">=1.16.3" }]
[[package]]
name = "hatchling"
version = "1.28.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "packaging" },
{ name = "pathspec" },
{ name = "pluggy" },
{ name = "trove-classifiers" },
]
sdist = { url = "https://files.pythonhosted.org/packages/0b/8e/e480359492affde4119a131da729dd26da742c2c9b604dff74836e47eef9/hatchling-1.28.0.tar.gz", hash = "sha256:4d50b02aece6892b8cd0b3ce6c82cb218594d3ec5836dbde75bf41a21ab004c8", size = 55365, upload-time = "2025-11-27T00:31:13.766Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/0d/a5/48cb7efb8b4718b1a4c0c331e3364a3a33f614ff0d6afd2b93ee883d3c47/hatchling-1.28.0-py3-none-any.whl", hash = "sha256:dc48722b68b3f4bbfa3ff618ca07cdea6750e7d03481289ffa8be1521d18a961", size = 76075, upload-time = "2025-11-27T00:31:12.544Z" },
]
[[package]]
name = "humanfriendly"
version = "10.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pyreadline3", marker = "sys_platform == 'win32'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/cc/3f/2c29224acb2e2df4d2046e4c73ee2662023c58ff5b113c4c1adac0886c43/humanfriendly-10.0.tar.gz", hash = "sha256:6b0b831ce8f15f7300721aa49829fc4e83921a9a301cc7f606be6686a2288ddc", size = 360702, upload-time = "2021-09-17T21:40:43.31Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/f0/0f/310fb31e39e2d734ccaa2c0fb981ee41f7bd5056ce9bc29b2248bd569169/humanfriendly-10.0-py2.py3-none-any.whl", hash = "sha256:1697e1a8a8f550fd43c2865cd84542fc175a61dcb779b6fee18cf6b6ccba1477", size = 86794, upload-time = "2021-09-17T21:40:39.897Z" },
]
[[package]]
name = "jinja2"
version = "3.1.6"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "markupsafe" },
]
sdist = { url = "https://files.pythonhosted.org/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115, upload-time = "2025-03-05T20:05:02.478Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899, upload-time = "2025-03-05T20:05:00.369Z" },
]
[[package]]
name = "markupsafe"
version = "3.0.3"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/7e/99/7690b6d4034fffd95959cbe0c02de8deb3098cc577c67bb6a24fe5d7caa7/markupsafe-3.0.3.tar.gz", hash = "sha256:722695808f4b6457b320fdc131280796bdceb04ab50fe1795cd540799ebe1698", size = 80313, upload-time = "2025-09-27T18:37:40.426Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/38/2f/907b9c7bbba283e68f20259574b13d005c121a0fa4c175f9bed27c4597ff/markupsafe-3.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e1cf1972137e83c5d4c136c43ced9ac51d0e124706ee1c8aa8532c1287fa8795", size = 11622, upload-time = "2025-09-27T18:36:41.777Z" },
{ url = "https://files.pythonhosted.org/packages/9c/d9/5f7756922cdd676869eca1c4e3c0cd0df60ed30199ffd775e319089cb3ed/markupsafe-3.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:116bb52f642a37c115f517494ea5feb03889e04df47eeff5b130b1808ce7c219", size = 12029, upload-time = "2025-09-27T18:36:43.257Z" },
{ url = "https://files.pythonhosted.org/packages/00/07/575a68c754943058c78f30db02ee03a64b3c638586fba6a6dd56830b30a3/markupsafe-3.0.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:133a43e73a802c5562be9bbcd03d090aa5a1fe899db609c29e8c8d815c5f6de6", size = 24374, upload-time = "2025-09-27T18:36:44.508Z" },
{ url = "https://files.pythonhosted.org/packages/a9/21/9b05698b46f218fc0e118e1f8168395c65c8a2c750ae2bab54fc4bd4e0e8/markupsafe-3.0.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ccfcd093f13f0f0b7fdd0f198b90053bf7b2f02a3927a30e63f3ccc9df56b676", size = 22980, upload-time = "2025-09-27T18:36:45.385Z" },
{ url = "https://files.pythonhosted.org/packages/7f/71/544260864f893f18b6827315b988c146b559391e6e7e8f7252839b1b846a/markupsafe-3.0.3-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:509fa21c6deb7a7a273d629cf5ec029bc209d1a51178615ddf718f5918992ab9", size = 21990, upload-time = "2025-09-27T18:36:46.916Z" },
{ url = "https://files.pythonhosted.org/packages/c2/28/b50fc2f74d1ad761af2f5dcce7492648b983d00a65b8c0e0cb457c82ebbe/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a4afe79fb3de0b7097d81da19090f4df4f8d3a2b3adaa8764138aac2e44f3af1", size = 23784, upload-time = "2025-09-27T18:36:47.884Z" },
{ url = "https://files.pythonhosted.org/packages/ed/76/104b2aa106a208da8b17a2fb72e033a5a9d7073c68f7e508b94916ed47a9/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:795e7751525cae078558e679d646ae45574b47ed6e7771863fcc079a6171a0fc", size = 21588, upload-time = "2025-09-27T18:36:48.82Z" },
{ url = "https://files.pythonhosted.org/packages/b5/99/16a5eb2d140087ebd97180d95249b00a03aa87e29cc224056274f2e45fd6/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8485f406a96febb5140bfeca44a73e3ce5116b2501ac54fe953e488fb1d03b12", size = 23041, upload-time = "2025-09-27T18:36:49.797Z" },
{ url = "https://files.pythonhosted.org/packages/19/bc/e7140ed90c5d61d77cea142eed9f9c303f4c4806f60a1044c13e3f1471d0/markupsafe-3.0.3-cp313-cp313-win32.whl", hash = "sha256:bdd37121970bfd8be76c5fb069c7751683bdf373db1ed6c010162b2a130248ed", size = 14543, upload-time = "2025-09-27T18:36:51.584Z" },
{ url = "https://files.pythonhosted.org/packages/05/73/c4abe620b841b6b791f2edc248f556900667a5a1cf023a6646967ae98335/markupsafe-3.0.3-cp313-cp313-win_amd64.whl", hash = "sha256:9a1abfdc021a164803f4d485104931fb8f8c1efd55bc6b748d2f5774e78b62c5", size = 15113, upload-time = "2025-09-27T18:36:52.537Z" },
{ url = "https://files.pythonhosted.org/packages/f0/3a/fa34a0f7cfef23cf9500d68cb7c32dd64ffd58a12b09225fb03dd37d5b80/markupsafe-3.0.3-cp313-cp313-win_arm64.whl", hash = "sha256:7e68f88e5b8799aa49c85cd116c932a1ac15caaa3f5db09087854d218359e485", size = 13911, upload-time = "2025-09-27T18:36:53.513Z" },
{ url = "https://files.pythonhosted.org/packages/e4/d7/e05cd7efe43a88a17a37b3ae96e79a19e846f3f456fe79c57ca61356ef01/markupsafe-3.0.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:218551f6df4868a8d527e3062d0fb968682fe92054e89978594c28e642c43a73", size = 11658, upload-time = "2025-09-27T18:36:54.819Z" },
{ url = "https://files.pythonhosted.org/packages/99/9e/e412117548182ce2148bdeacdda3bb494260c0b0184360fe0d56389b523b/markupsafe-3.0.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3524b778fe5cfb3452a09d31e7b5adefeea8c5be1d43c4f810ba09f2ceb29d37", size = 12066, upload-time = "2025-09-27T18:36:55.714Z" },
{ url = "https://files.pythonhosted.org/packages/bc/e6/fa0ffcda717ef64a5108eaa7b4f5ed28d56122c9a6d70ab8b72f9f715c80/markupsafe-3.0.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4e885a3d1efa2eadc93c894a21770e4bc67899e3543680313b09f139e149ab19", size = 25639, upload-time = "2025-09-27T18:36:56.908Z" },
{ url = "https://files.pythonhosted.org/packages/96/ec/2102e881fe9d25fc16cb4b25d5f5cde50970967ffa5dddafdb771237062d/markupsafe-3.0.3-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8709b08f4a89aa7586de0aadc8da56180242ee0ada3999749b183aa23df95025", size = 23569, upload-time = "2025-09-27T18:36:57.913Z" },
{ url = "https://files.pythonhosted.org/packages/4b/30/6f2fce1f1f205fc9323255b216ca8a235b15860c34b6798f810f05828e32/markupsafe-3.0.3-cp313-cp313t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:b8512a91625c9b3da6f127803b166b629725e68af71f8184ae7e7d54686a56d6", size = 23284, upload-time = "2025-09-27T18:36:58.833Z" },
{ url = "https://files.pythonhosted.org/packages/58/47/4a0ccea4ab9f5dcb6f79c0236d954acb382202721e704223a8aafa38b5c8/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:9b79b7a16f7fedff2495d684f2b59b0457c3b493778c9eed31111be64d58279f", size = 24801, upload-time = "2025-09-27T18:36:59.739Z" },
{ url = "https://files.pythonhosted.org/packages/6a/70/3780e9b72180b6fecb83a4814d84c3bf4b4ae4bf0b19c27196104149734c/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_riscv64.whl", hash = "sha256:12c63dfb4a98206f045aa9563db46507995f7ef6d83b2f68eda65c307c6829eb", size = 22769, upload-time = "2025-09-27T18:37:00.719Z" },
{ url = "https://files.pythonhosted.org/packages/98/c5/c03c7f4125180fc215220c035beac6b9cb684bc7a067c84fc69414d315f5/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8f71bc33915be5186016f675cd83a1e08523649b0e33efdb898db577ef5bb009", size = 23642, upload-time = "2025-09-27T18:37:01.673Z" },
{ url = "https://files.pythonhosted.org/packages/80/d6/2d1b89f6ca4bff1036499b1e29a1d02d282259f3681540e16563f27ebc23/markupsafe-3.0.3-cp313-cp313t-win32.whl", hash = "sha256:69c0b73548bc525c8cb9a251cddf1931d1db4d2258e9599c28c07ef3580ef354", size = 14612, upload-time = "2025-09-27T18:37:02.639Z" },
{ url = "https://files.pythonhosted.org/packages/2b/98/e48a4bfba0a0ffcf9925fe2d69240bfaa19c6f7507b8cd09c70684a53c1e/markupsafe-3.0.3-cp313-cp313t-win_amd64.whl", hash = "sha256:1b4b79e8ebf6b55351f0d91fe80f893b4743f104bff22e90697db1590e47a218", size = 15200, upload-time = "2025-09-27T18:37:03.582Z" },
{ url = "https://files.pythonhosted.org/packages/0e/72/e3cc540f351f316e9ed0f092757459afbc595824ca724cbc5a5d4263713f/markupsafe-3.0.3-cp313-cp313t-win_arm64.whl", hash = "sha256:ad2cf8aa28b8c020ab2fc8287b0f823d0a7d8630784c31e9ee5edea20f406287", size = 13973, upload-time = "2025-09-27T18:37:04.929Z" },
{ url = "https://files.pythonhosted.org/packages/33/8a/8e42d4838cd89b7dde187011e97fe6c3af66d8c044997d2183fbd6d31352/markupsafe-3.0.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:eaa9599de571d72e2daf60164784109f19978b327a3910d3e9de8c97b5b70cfe", size = 11619, upload-time = "2025-09-27T18:37:06.342Z" },
{ url = "https://files.pythonhosted.org/packages/b5/64/7660f8a4a8e53c924d0fa05dc3a55c9cee10bbd82b11c5afb27d44b096ce/markupsafe-3.0.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c47a551199eb8eb2121d4f0f15ae0f923d31350ab9280078d1e5f12b249e0026", size = 12029, upload-time = "2025-09-27T18:37:07.213Z" },
{ url = "https://files.pythonhosted.org/packages/da/ef/e648bfd021127bef5fa12e1720ffed0c6cbb8310c8d9bea7266337ff06de/markupsafe-3.0.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f34c41761022dd093b4b6896d4810782ffbabe30f2d443ff5f083e0cbbb8c737", size = 24408, upload-time = "2025-09-27T18:37:09.572Z" },
{ url = "https://files.pythonhosted.org/packages/41/3c/a36c2450754618e62008bf7435ccb0f88053e07592e6028a34776213d877/markupsafe-3.0.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:457a69a9577064c05a97c41f4e65148652db078a3a509039e64d3467b9e7ef97", size = 23005, upload-time = "2025-09-27T18:37:10.58Z" },
{ url = "https://files.pythonhosted.org/packages/bc/20/b7fdf89a8456b099837cd1dc21974632a02a999ec9bf7ca3e490aacd98e7/markupsafe-3.0.3-cp314-cp314-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:e8afc3f2ccfa24215f8cb28dcf43f0113ac3c37c2f0f0806d8c70e4228c5cf4d", size = 22048, upload-time = "2025-09-27T18:37:11.547Z" },
{ url = "https://files.pythonhosted.org/packages/9a/a7/591f592afdc734f47db08a75793a55d7fbcc6902a723ae4cfbab61010cc5/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:ec15a59cf5af7be74194f7ab02d0f59a62bdcf1a537677ce67a2537c9b87fcda", size = 23821, upload-time = "2025-09-27T18:37:12.48Z" },
{ url = "https://files.pythonhosted.org/packages/7d/33/45b24e4f44195b26521bc6f1a82197118f74df348556594bd2262bda1038/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:0eb9ff8191e8498cca014656ae6b8d61f39da5f95b488805da4bb029cccbfbaf", size = 21606, upload-time = "2025-09-27T18:37:13.485Z" },
{ url = "https://files.pythonhosted.org/packages/ff/0e/53dfaca23a69fbfbbf17a4b64072090e70717344c52eaaaa9c5ddff1e5f0/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:2713baf880df847f2bece4230d4d094280f4e67b1e813eec43b4c0e144a34ffe", size = 23043, upload-time = "2025-09-27T18:37:14.408Z" },
{ url = "https://files.pythonhosted.org/packages/46/11/f333a06fc16236d5238bfe74daccbca41459dcd8d1fa952e8fbd5dccfb70/markupsafe-3.0.3-cp314-cp314-win32.whl", hash = "sha256:729586769a26dbceff69f7a7dbbf59ab6572b99d94576a5592625d5b411576b9", size = 14747, upload-time = "2025-09-27T18:37:15.36Z" },
{ url = "https://files.pythonhosted.org/packages/28/52/182836104b33b444e400b14f797212f720cbc9ed6ba34c800639d154e821/markupsafe-3.0.3-cp314-cp314-win_amd64.whl", hash = "sha256:bdc919ead48f234740ad807933cdf545180bfbe9342c2bb451556db2ed958581", size = 15341, upload-time = "2025-09-27T18:37:16.496Z" },
{ url = "https://files.pythonhosted.org/packages/6f/18/acf23e91bd94fd7b3031558b1f013adfa21a8e407a3fdb32745538730382/markupsafe-3.0.3-cp314-cp314-win_arm64.whl", hash = "sha256:5a7d5dc5140555cf21a6fefbdbf8723f06fcd2f63ef108f2854de715e4422cb4", size = 14073, upload-time = "2025-09-27T18:37:17.476Z" },
{ url = "https://files.pythonhosted.org/packages/3c/f0/57689aa4076e1b43b15fdfa646b04653969d50cf30c32a102762be2485da/markupsafe-3.0.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1353ef0c1b138e1907ae78e2f6c63ff67501122006b0f9abad68fda5f4ffc6ab", size = 11661, upload-time = "2025-09-27T18:37:18.453Z" },
{ url = "https://files.pythonhosted.org/packages/89/c3/2e67a7ca217c6912985ec766c6393b636fb0c2344443ff9d91404dc4c79f/markupsafe-3.0.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:1085e7fbddd3be5f89cc898938f42c0b3c711fdcb37d75221de2666af647c175", size = 12069, upload-time = "2025-09-27T18:37:19.332Z" },
{ url = "https://files.pythonhosted.org/packages/f0/00/be561dce4e6ca66b15276e184ce4b8aec61fe83662cce2f7d72bd3249d28/markupsafe-3.0.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1b52b4fb9df4eb9ae465f8d0c228a00624de2334f216f178a995ccdcf82c4634", size = 25670, upload-time = "2025-09-27T18:37:20.245Z" },
{ url = "https://files.pythonhosted.org/packages/50/09/c419f6f5a92e5fadde27efd190eca90f05e1261b10dbd8cbcb39cd8ea1dc/markupsafe-3.0.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fed51ac40f757d41b7c48425901843666a6677e3e8eb0abcff09e4ba6e664f50", size = 23598, upload-time = "2025-09-27T18:37:21.177Z" },
{ url = "https://files.pythonhosted.org/packages/22/44/a0681611106e0b2921b3033fc19bc53323e0b50bc70cffdd19f7d679bb66/markupsafe-3.0.3-cp314-cp314t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:f190daf01f13c72eac4efd5c430a8de82489d9cff23c364c3ea822545032993e", size = 23261, upload-time = "2025-09-27T18:37:22.167Z" },
{ url = "https://files.pythonhosted.org/packages/5f/57/1b0b3f100259dc9fffe780cfb60d4be71375510e435efec3d116b6436d43/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:e56b7d45a839a697b5eb268c82a71bd8c7f6c94d6fd50c3d577fa39a9f1409f5", size = 24835, upload-time = "2025-09-27T18:37:23.296Z" },
{ url = "https://files.pythonhosted.org/packages/26/6a/4bf6d0c97c4920f1597cc14dd720705eca0bf7c787aebc6bb4d1bead5388/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_riscv64.whl", hash = "sha256:f3e98bb3798ead92273dc0e5fd0f31ade220f59a266ffd8a4f6065e0a3ce0523", size = 22733, upload-time = "2025-09-27T18:37:24.237Z" },
{ url = "https://files.pythonhosted.org/packages/14/c7/ca723101509b518797fedc2fdf79ba57f886b4aca8a7d31857ba3ee8281f/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:5678211cb9333a6468fb8d8be0305520aa073f50d17f089b5b4b477ea6e67fdc", size = 23672, upload-time = "2025-09-27T18:37:25.271Z" },
{ url = "https://files.pythonhosted.org/packages/fb/df/5bd7a48c256faecd1d36edc13133e51397e41b73bb77e1a69deab746ebac/markupsafe-3.0.3-cp314-cp314t-win32.whl", hash = "sha256:915c04ba3851909ce68ccc2b8e2cd691618c4dc4c4232fb7982bca3f41fd8c3d", size = 14819, upload-time = "2025-09-27T18:37:26.285Z" },
{ url = "https://files.pythonhosted.org/packages/1a/8a/0402ba61a2f16038b48b39bccca271134be00c5c9f0f623208399333c448/markupsafe-3.0.3-cp314-cp314t-win_amd64.whl", hash = "sha256:4faffd047e07c38848ce017e8725090413cd80cbc23d86e55c587bf979e579c9", size = 15426, upload-time = "2025-09-27T18:37:27.316Z" },
{ url = "https://files.pythonhosted.org/packages/70/bc/6f1c2f612465f5fa89b95bead1f44dcb607670fd42891d8fdcd5d039f4f4/markupsafe-3.0.3-cp314-cp314t-win_arm64.whl", hash = "sha256:32001d6a8fc98c8cb5c947787c5d08b0a50663d139f1305bac5885d98d9b40fa", size = 14146, upload-time = "2025-09-27T18:37:28.327Z" },
]
[[package]]
name = "mpmath"
version = "1.3.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/e0/47/dd32fa426cc72114383ac549964eecb20ecfd886d1e5ccf5340b55b02f57/mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f", size = 508106, upload-time = "2023-03-07T16:47:11.061Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c", size = 536198, upload-time = "2023-03-07T16:47:09.197Z" },
]
[[package]]
name = "networkx"
version = "3.6"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/e8/fc/7b6fd4d22c8c4dc5704430140d8b3f520531d4fe7328b8f8d03f5a7950e8/networkx-3.6.tar.gz", hash = "sha256:285276002ad1f7f7da0f7b42f004bcba70d381e936559166363707fdad3d72ad", size = 2511464, upload-time = "2025-11-24T03:03:47.158Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/07/c7/d64168da60332c17d24c0d2f08bdf3987e8d1ae9d84b5bbd0eec2eb26a55/networkx-3.6-py3-none-any.whl", hash = "sha256:cdb395b105806062473d3be36458d8f1459a4e4b98e236a66c3a48996e07684f", size = 2063713, upload-time = "2025-11-24T03:03:45.21Z" },
]
[[package]]
name = "numpy"
version = "2.3.5"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/76/65/21b3bc86aac7b8f2862db1e808f1ea22b028e30a225a34a5ede9bf8678f2/numpy-2.3.5.tar.gz", hash = "sha256:784db1dcdab56bf0517743e746dfb0f885fc68d948aba86eeec2cba234bdf1c0", size = 20584950, upload-time = "2025-11-16T22:52:42.067Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/db/69/9cde09f36da4b5a505341180a3f2e6fadc352fd4d2b7096ce9778db83f1a/numpy-2.3.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d0f23b44f57077c1ede8c5f26b30f706498b4862d3ff0a7298b8411dd2f043ff", size = 16728251, upload-time = "2025-11-16T22:50:19.013Z" },
{ url = "https://files.pythonhosted.org/packages/79/fb/f505c95ceddd7027347b067689db71ca80bd5ecc926f913f1a23e65cf09b/numpy-2.3.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:aa5bc7c5d59d831d9773d1170acac7893ce3a5e130540605770ade83280e7188", size = 12254652, upload-time = "2025-11-16T22:50:21.487Z" },
{ url = "https://files.pythonhosted.org/packages/78/da/8c7738060ca9c31b30e9301ee0cf6c5ffdbf889d9593285a1cead337f9a5/numpy-2.3.5-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:ccc933afd4d20aad3c00bcef049cb40049f7f196e0397f1109dba6fed63267b0", size = 5083172, upload-time = "2025-11-16T22:50:24.562Z" },
{ url = "https://files.pythonhosted.org/packages/a4/b4/ee5bb2537fb9430fd2ef30a616c3672b991a4129bb1c7dcc42aa0abbe5d7/numpy-2.3.5-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:afaffc4393205524af9dfa400fa250143a6c3bc646c08c9f5e25a9f4b4d6a903", size = 6622990, upload-time = "2025-11-16T22:50:26.47Z" },
{ url = "https://files.pythonhosted.org/packages/95/03/dc0723a013c7d7c19de5ef29e932c3081df1c14ba582b8b86b5de9db7f0f/numpy-2.3.5-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9c75442b2209b8470d6d5d8b1c25714270686f14c749028d2199c54e29f20b4d", size = 14248902, upload-time = "2025-11-16T22:50:28.861Z" },
{ url = "https://files.pythonhosted.org/packages/f5/10/ca162f45a102738958dcec8023062dad0cbc17d1ab99d68c4e4a6c45fb2b/numpy-2.3.5-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:11e06aa0af8c0f05104d56450d6093ee639e15f24ecf62d417329d06e522e017", size = 16597430, upload-time = "2025-11-16T22:50:31.56Z" },
{ url = "https://files.pythonhosted.org/packages/2a/51/c1e29be863588db58175175f057286900b4b3327a1351e706d5e0f8dd679/numpy-2.3.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ed89927b86296067b4f81f108a2271d8926467a8868e554eaf370fc27fa3ccaf", size = 16024551, upload-time = "2025-11-16T22:50:34.242Z" },
{ url = "https://files.pythonhosted.org/packages/83/68/8236589d4dbb87253d28259d04d9b814ec0ecce7cb1c7fed29729f4c3a78/numpy-2.3.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:51c55fe3451421f3a6ef9a9c1439e82101c57a2c9eab9feb196a62b1a10b58ce", size = 18533275, upload-time = "2025-11-16T22:50:37.651Z" },
{ url = "https://files.pythonhosted.org/packages/40/56/2932d75b6f13465239e3b7b7e511be27f1b8161ca2510854f0b6e521c395/numpy-2.3.5-cp313-cp313-win32.whl", hash = "sha256:1978155dd49972084bd6ef388d66ab70f0c323ddee6f693d539376498720fb7e", size = 6277637, upload-time = "2025-11-16T22:50:40.11Z" },
{ url = "https://files.pythonhosted.org/packages/0c/88/e2eaa6cffb115b85ed7c7c87775cb8bcf0816816bc98ca8dbfa2ee33fe6e/numpy-2.3.5-cp313-cp313-win_amd64.whl", hash = "sha256:00dc4e846108a382c5869e77c6ed514394bdeb3403461d25a829711041217d5b", size = 12779090, upload-time = "2025-11-16T22:50:42.503Z" },
{ url = "https://files.pythonhosted.org/packages/8f/88/3f41e13a44ebd4034ee17baa384acac29ba6a4fcc2aca95f6f08ca0447d1/numpy-2.3.5-cp313-cp313-win_arm64.whl", hash = "sha256:0472f11f6ec23a74a906a00b48a4dcf3849209696dff7c189714511268d103ae", size = 10194710, upload-time = "2025-11-16T22:50:44.971Z" },
{ url = "https://files.pythonhosted.org/packages/13/cb/71744144e13389d577f867f745b7df2d8489463654a918eea2eeb166dfc9/numpy-2.3.5-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:414802f3b97f3c1eef41e530aaba3b3c1620649871d8cb38c6eaff034c2e16bd", size = 16827292, upload-time = "2025-11-16T22:50:47.715Z" },
{ url = "https://files.pythonhosted.org/packages/71/80/ba9dc6f2a4398e7f42b708a7fdc841bb638d353be255655498edbf9a15a8/numpy-2.3.5-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5ee6609ac3604fa7780e30a03e5e241a7956f8e2fcfe547d51e3afa5247ac47f", size = 12378897, upload-time = "2025-11-16T22:50:51.327Z" },
{ url = "https://files.pythonhosted.org/packages/2e/6d/db2151b9f64264bcceccd51741aa39b50150de9b602d98ecfe7e0c4bff39/numpy-2.3.5-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:86d835afea1eaa143012a2d7a3f45a3adce2d7adc8b4961f0b362214d800846a", size = 5207391, upload-time = "2025-11-16T22:50:54.542Z" },
{ url = "https://files.pythonhosted.org/packages/80/ae/429bacace5ccad48a14c4ae5332f6aa8ab9f69524193511d60ccdfdc65fa/numpy-2.3.5-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:30bc11310e8153ca664b14c5f1b73e94bd0503681fcf136a163de856f3a50139", size = 6721275, upload-time = "2025-11-16T22:50:56.794Z" },
{ url = "https://files.pythonhosted.org/packages/74/5b/1919abf32d8722646a38cd527bc3771eb229a32724ee6ba340ead9b92249/numpy-2.3.5-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1062fde1dcf469571705945b0f221b73928f34a20c904ffb45db101907c3454e", size = 14306855, upload-time = "2025-11-16T22:50:59.208Z" },
{ url = "https://files.pythonhosted.org/packages/a5/87/6831980559434973bebc30cd9c1f21e541a0f2b0c280d43d3afd909b66d0/numpy-2.3.5-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ce581db493ea1a96c0556360ede6607496e8bf9b3a8efa66e06477267bc831e9", size = 16657359, upload-time = "2025-11-16T22:51:01.991Z" },
{ url = "https://files.pythonhosted.org/packages/dd/91/c797f544491ee99fd00495f12ebb7802c440c1915811d72ac5b4479a3356/numpy-2.3.5-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:cc8920d2ec5fa99875b670bb86ddeb21e295cb07aa331810d9e486e0b969d946", size = 16093374, upload-time = "2025-11-16T22:51:05.291Z" },
{ url = "https://files.pythonhosted.org/packages/74/a6/54da03253afcbe7a72785ec4da9c69fb7a17710141ff9ac5fcb2e32dbe64/numpy-2.3.5-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:9ee2197ef8c4f0dfe405d835f3b6a14f5fee7782b5de51ba06fb65fc9b36e9f1", size = 18594587, upload-time = "2025-11-16T22:51:08.585Z" },
{ url = "https://files.pythonhosted.org/packages/80/e9/aff53abbdd41b0ecca94285f325aff42357c6b5abc482a3fcb4994290b18/numpy-2.3.5-cp313-cp313t-win32.whl", hash = "sha256:70b37199913c1bd300ff6e2693316c6f869c7ee16378faf10e4f5e3275b299c3", size = 6405940, upload-time = "2025-11-16T22:51:11.541Z" },
{ url = "https://files.pythonhosted.org/packages/d5/81/50613fec9d4de5480de18d4f8ef59ad7e344d497edbef3cfd80f24f98461/numpy-2.3.5-cp313-cp313t-win_amd64.whl", hash = "sha256:b501b5fa195cc9e24fe102f21ec0a44dffc231d2af79950b451e0d99cea02234", size = 12920341, upload-time = "2025-11-16T22:51:14.312Z" },
{ url = "https://files.pythonhosted.org/packages/bb/ab/08fd63b9a74303947f34f0bd7c5903b9c5532c2d287bead5bdf4c556c486/numpy-2.3.5-cp313-cp313t-win_arm64.whl", hash = "sha256:a80afd79f45f3c4a7d341f13acbe058d1ca8ac017c165d3fa0d3de6bc1a079d7", size = 10262507, upload-time = "2025-11-16T22:51:16.846Z" },
{ url = "https://files.pythonhosted.org/packages/ba/97/1a914559c19e32d6b2e233cf9a6a114e67c856d35b1d6babca571a3e880f/numpy-2.3.5-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:bf06bc2af43fa8d32d30fae16ad965663e966b1a3202ed407b84c989c3221e82", size = 16735706, upload-time = "2025-11-16T22:51:19.558Z" },
{ url = "https://files.pythonhosted.org/packages/57/d4/51233b1c1b13ecd796311216ae417796b88b0616cfd8a33ae4536330748a/numpy-2.3.5-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:052e8c42e0c49d2575621c158934920524f6c5da05a1d3b9bab5d8e259e045f0", size = 12264507, upload-time = "2025-11-16T22:51:22.492Z" },
{ url = "https://files.pythonhosted.org/packages/45/98/2fe46c5c2675b8306d0b4a3ec3494273e93e1226a490f766e84298576956/numpy-2.3.5-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:1ed1ec893cff7040a02c8aa1c8611b94d395590d553f6b53629a4461dc7f7b63", size = 5093049, upload-time = "2025-11-16T22:51:25.171Z" },
{ url = "https://files.pythonhosted.org/packages/ce/0e/0698378989bb0ac5f1660c81c78ab1fe5476c1a521ca9ee9d0710ce54099/numpy-2.3.5-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:2dcd0808a421a482a080f89859a18beb0b3d1e905b81e617a188bd80422d62e9", size = 6626603, upload-time = "2025-11-16T22:51:27Z" },
{ url = "https://files.pythonhosted.org/packages/5e/a6/9ca0eecc489640615642a6cbc0ca9e10df70df38c4d43f5a928ff18d8827/numpy-2.3.5-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:727fd05b57df37dc0bcf1a27767a3d9a78cbbc92822445f32cc3436ba797337b", size = 14262696, upload-time = "2025-11-16T22:51:29.402Z" },
{ url = "https://files.pythonhosted.org/packages/c8/f6/07ec185b90ec9d7217a00eeeed7383b73d7e709dae2a9a021b051542a708/numpy-2.3.5-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fffe29a1ef00883599d1dc2c51aa2e5d80afe49523c261a74933df395c15c520", size = 16597350, upload-time = "2025-11-16T22:51:32.167Z" },
{ url = "https://files.pythonhosted.org/packages/75/37/164071d1dde6a1a84c9b8e5b414fa127981bad47adf3a6b7e23917e52190/numpy-2.3.5-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:8f7f0e05112916223d3f438f293abf0727e1181b5983f413dfa2fefc4098245c", size = 16040190, upload-time = "2025-11-16T22:51:35.403Z" },
{ url = "https://files.pythonhosted.org/packages/08/3c/f18b82a406b04859eb026d204e4e1773eb41c5be58410f41ffa511d114ae/numpy-2.3.5-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:2e2eb32ddb9ccb817d620ac1d8dae7c3f641c1e5f55f531a33e8ab97960a75b8", size = 18536749, upload-time = "2025-11-16T22:51:39.698Z" },
{ url = "https://files.pythonhosted.org/packages/40/79/f82f572bf44cf0023a2fe8588768e23e1592585020d638999f15158609e1/numpy-2.3.5-cp314-cp314-win32.whl", hash = "sha256:66f85ce62c70b843bab1fb14a05d5737741e74e28c7b8b5a064de10142fad248", size = 6335432, upload-time = "2025-11-16T22:51:42.476Z" },
{ url = "https://files.pythonhosted.org/packages/a3/2e/235b4d96619931192c91660805e5e49242389742a7a82c27665021db690c/numpy-2.3.5-cp314-cp314-win_amd64.whl", hash = "sha256:e6a0bc88393d65807d751a614207b7129a310ca4fe76a74e5c7da5fa5671417e", size = 12919388, upload-time = "2025-11-16T22:51:45.275Z" },
{ url = "https://files.pythonhosted.org/packages/07/2b/29fd75ce45d22a39c61aad74f3d718e7ab67ccf839ca8b60866054eb15f8/numpy-2.3.5-cp314-cp314-win_arm64.whl", hash = "sha256:aeffcab3d4b43712bb7a60b65f6044d444e75e563ff6180af8f98dd4b905dfd2", size = 10476651, upload-time = "2025-11-16T22:51:47.749Z" },
{ url = "https://files.pythonhosted.org/packages/17/e1/f6a721234ebd4d87084cfa68d081bcba2f5cfe1974f7de4e0e8b9b2a2ba1/numpy-2.3.5-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:17531366a2e3a9e30762c000f2c43a9aaa05728712e25c11ce1dbe700c53ad41", size = 16834503, upload-time = "2025-11-16T22:51:50.443Z" },
{ url = "https://files.pythonhosted.org/packages/5c/1c/baf7ffdc3af9c356e1c135e57ab7cf8d247931b9554f55c467efe2c69eff/numpy-2.3.5-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:d21644de1b609825ede2f48be98dfde4656aefc713654eeee280e37cadc4e0ad", size = 12381612, upload-time = "2025-11-16T22:51:53.609Z" },
{ url = "https://files.pythonhosted.org/packages/74/91/f7f0295151407ddc9ba34e699013c32c3c91944f9b35fcf9281163dc1468/numpy-2.3.5-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:c804e3a5aba5460c73955c955bdbd5c08c354954e9270a2c1565f62e866bdc39", size = 5210042, upload-time = "2025-11-16T22:51:56.213Z" },
{ url = "https://files.pythonhosted.org/packages/2e/3b/78aebf345104ec50dd50a4d06ddeb46a9ff5261c33bcc58b1c4f12f85ec2/numpy-2.3.5-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:cc0a57f895b96ec78969c34f682c602bf8da1a0270b09bc65673df2e7638ec20", size = 6724502, upload-time = "2025-11-16T22:51:58.584Z" },
{ url = "https://files.pythonhosted.org/packages/02/c6/7c34b528740512e57ef1b7c8337ab0b4f0bddf34c723b8996c675bc2bc91/numpy-2.3.5-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:900218e456384ea676e24ea6a0417f030a3b07306d29d7ad843957b40a9d8d52", size = 14308962, upload-time = "2025-11-16T22:52:01.698Z" },
{ url = "https://files.pythonhosted.org/packages/80/35/09d433c5262bc32d725bafc619e095b6a6651caf94027a03da624146f655/numpy-2.3.5-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:09a1bea522b25109bf8e6f3027bd810f7c1085c64a0c7ce050c1676ad0ba010b", size = 16655054, upload-time = "2025-11-16T22:52:04.267Z" },
{ url = "https://files.pythonhosted.org/packages/7a/ab/6a7b259703c09a88804fa2430b43d6457b692378f6b74b356155283566ac/numpy-2.3.5-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:04822c00b5fd0323c8166d66c701dc31b7fbd252c100acd708c48f763968d6a3", size = 16091613, upload-time = "2025-11-16T22:52:08.651Z" },
{ url = "https://files.pythonhosted.org/packages/c2/88/330da2071e8771e60d1038166ff9d73f29da37b01ec3eb43cb1427464e10/numpy-2.3.5-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:d6889ec4ec662a1a37eb4b4fb26b6100841804dac55bd9df579e326cdc146227", size = 18591147, upload-time = "2025-11-16T22:52:11.453Z" },
{ url = "https://files.pythonhosted.org/packages/51/41/851c4b4082402d9ea860c3626db5d5df47164a712cb23b54be028b184c1c/numpy-2.3.5-cp314-cp314t-win32.whl", hash = "sha256:93eebbcf1aafdf7e2ddd44c2923e2672e1010bddc014138b229e49725b4d6be5", size = 6479806, upload-time = "2025-11-16T22:52:14.641Z" },
{ url = "https://files.pythonhosted.org/packages/90/30/d48bde1dfd93332fa557cff1972fbc039e055a52021fbef4c2c4b1eefd17/numpy-2.3.5-cp314-cp314t-win_amd64.whl", hash = "sha256:c8a9958e88b65c3b27e22ca2a076311636850b612d6bbfb76e8d156aacde2aaf", size = 13105760, upload-time = "2025-11-16T22:52:17.975Z" },
{ url = "https://files.pythonhosted.org/packages/2d/fd/4b5eb0b3e888d86aee4d198c23acec7d214baaf17ea93c1adec94c9518b9/numpy-2.3.5-cp314-cp314t-win_arm64.whl", hash = "sha256:6203fdf9f3dc5bdaed7319ad8698e685c7a3be10819f41d32a0723e611733b42", size = 10545459, upload-time = "2025-11-16T22:52:20.55Z" },
]
[[package]]
name = "nvidia-cublas-cu12"
version = "12.8.4.1"
source = { registry = "https://pypi.org/simple" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/dc/61/e24b560ab2e2eaeb3c839129175fb330dfcfc29e5203196e5541a4c44682/nvidia_cublas_cu12-12.8.4.1-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:8ac4e771d5a348c551b2a426eda6193c19aa630236b418086020df5ba9667142", size = 594346921, upload-time = "2025-03-07T01:44:31.254Z" },
]
[[package]]
name = "nvidia-cuda-cupti-cu12"
version = "12.8.90"
source = { registry = "https://pypi.org/simple" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/f8/02/2adcaa145158bf1a8295d83591d22e4103dbfd821bcaf6f3f53151ca4ffa/nvidia_cuda_cupti_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ea0cb07ebda26bb9b29ba82cda34849e73c166c18162d3913575b0c9db9a6182", size = 10248621, upload-time = "2025-03-07T01:40:21.213Z" },
]
[[package]]
name = "nvidia-cuda-nvrtc-cu12"
version = "12.8.93"
source = { registry = "https://pypi.org/simple" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/05/6b/32f747947df2da6994e999492ab306a903659555dddc0fbdeb9d71f75e52/nvidia_cuda_nvrtc_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:a7756528852ef889772a84c6cd89d41dfa74667e24cca16bb31f8f061e3e9994", size = 88040029, upload-time = "2025-03-07T01:42:13.562Z" },
]
[[package]]
name = "nvidia-cuda-runtime-cu12"
version = "12.8.90"
source = { registry = "https://pypi.org/simple" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/0d/9b/a997b638fcd068ad6e4d53b8551a7d30fe8b404d6f1804abf1df69838932/nvidia_cuda_runtime_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:adade8dcbd0edf427b7204d480d6066d33902cab2a4707dcfc48a2d0fd44ab90", size = 954765, upload-time = "2025-03-07T01:40:01.615Z" },
]
[[package]]
name = "nvidia-cudnn-cu12"
version = "9.10.2.21"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/ba/51/e123d997aa098c61d029f76663dedbfb9bc8dcf8c60cbd6adbe42f76d049/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:949452be657fa16687d0930933f032835951ef0892b37d2d53824d1a84dc97a8", size = 706758467, upload-time = "2025-06-06T21:54:08.597Z" },
]
[[package]]
name = "nvidia-cufft-cu12"
version = "11.3.3.83"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/1f/13/ee4e00f30e676b66ae65b4f08cb5bcbb8392c03f54f2d5413ea99a5d1c80/nvidia_cufft_cu12-11.3.3.83-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4d2dd21ec0b88cf61b62e6b43564355e5222e4a3fb394cac0db101f2dd0d4f74", size = 193118695, upload-time = "2025-03-07T01:45:27.821Z" },
]
[[package]]
name = "nvidia-cufile-cu12"
version = "1.13.1.3"
source = { registry = "https://pypi.org/simple" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/bb/fe/1bcba1dfbfb8d01be8d93f07bfc502c93fa23afa6fd5ab3fc7c1df71038a/nvidia_cufile_cu12-1.13.1.3-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1d069003be650e131b21c932ec3d8969c1715379251f8d23a1860554b1cb24fc", size = 1197834, upload-time = "2025-03-07T01:45:50.723Z" },
]
[[package]]
name = "nvidia-curand-cu12"
version = "10.3.9.90"
source = { registry = "https://pypi.org/simple" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/fb/aa/6584b56dc84ebe9cf93226a5cde4d99080c8e90ab40f0c27bda7a0f29aa1/nvidia_curand_cu12-10.3.9.90-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:b32331d4f4df5d6eefa0554c565b626c7216f87a06a4f56fab27c3b68a830ec9", size = 63619976, upload-time = "2025-03-07T01:46:23.323Z" },
]
[[package]]
name = "nvidia-cusolver-cu12"
version = "11.7.3.90"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12" },
{ name = "nvidia-cusparse-cu12" },
{ name = "nvidia-nvjitlink-cu12" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/85/48/9a13d2975803e8cf2777d5ed57b87a0b6ca2cc795f9a4f59796a910bfb80/nvidia_cusolver_cu12-11.7.3.90-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:4376c11ad263152bd50ea295c05370360776f8c3427b30991df774f9fb26c450", size = 267506905, upload-time = "2025-03-07T01:47:16.273Z" },
]
[[package]]
name = "nvidia-cusparse-cu12"
version = "12.5.8.93"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/c2/f5/e1854cb2f2bcd4280c44736c93550cc300ff4b8c95ebe370d0aa7d2b473d/nvidia_cusparse_cu12-12.5.8.93-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1ec05d76bbbd8b61b06a80e1eaf8cf4959c3d4ce8e711b65ebd0443bb0ebb13b", size = 288216466, upload-time = "2025-03-07T01:48:13.779Z" },
]
[[package]]
name = "nvidia-cusparselt-cu12"
version = "0.7.1"
source = { registry = "https://pypi.org/simple" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/56/79/12978b96bd44274fe38b5dde5cfb660b1d114f70a65ef962bcbbed99b549/nvidia_cusparselt_cu12-0.7.1-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f1bb701d6b930d5a7cea44c19ceb973311500847f81b634d802b7b539dc55623", size = 287193691, upload-time = "2025-02-26T00:15:44.104Z" },
]
[[package]]
name = "nvidia-nccl-cu12"
version = "2.27.3"
source = { registry = "https://pypi.org/simple" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/5c/5b/4e4fff7bad39adf89f735f2bc87248c81db71205b62bcc0d5ca5b606b3c3/nvidia_nccl_cu12-2.27.3-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:adf27ccf4238253e0b826bce3ff5fa532d65fc42322c8bfdfaf28024c0fbe039", size = 322364134, upload-time = "2025-06-03T21:58:04.013Z" },
]
[[package]]
name = "nvidia-nvjitlink-cu12"
version = "12.8.93"
source = { registry = "https://pypi.org/simple" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/f6/74/86a07f1d0f42998ca31312f998bd3b9a7eff7f52378f4f270c8679c77fb9/nvidia_nvjitlink_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:81ff63371a7ebd6e6451970684f916be2eab07321b73c9d244dc2b4da7f73b88", size = 39254836, upload-time = "2025-03-07T01:49:55.661Z" },
]
[[package]]
name = "nvidia-nvtx-cu12"
version = "12.8.90"
source = { registry = "https://pypi.org/simple" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a2/eb/86626c1bbc2edb86323022371c39aa48df6fd8b0a1647bc274577f72e90b/nvidia_nvtx_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5b17e2001cc0d751a5bc2c6ec6d26ad95913324a4adb86788c944f8ce9ba441f", size = 89954, upload-time = "2025-03-07T01:42:44.131Z" },
]
[[package]]
name = "onnxruntime"
version = "1.23.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "coloredlogs" },
{ name = "flatbuffers" },
{ name = "numpy" },
{ name = "packaging" },
{ name = "protobuf" },
{ name = "sympy" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/3d/41/fba0cabccecefe4a1b5fc8020c44febb334637f133acefc7ec492029dd2c/onnxruntime-1.23.2-cp313-cp313-macosx_13_0_arm64.whl", hash = "sha256:2ff531ad8496281b4297f32b83b01cdd719617e2351ffe0dba5684fb283afa1f", size = 17196337, upload-time = "2025-10-22T03:46:35.168Z" },
{ url = "https://files.pythonhosted.org/packages/fe/f9/2d49ca491c6a986acce9f1d1d5fc2099108958cc1710c28e89a032c9cfe9/onnxruntime-1.23.2-cp313-cp313-macosx_13_0_x86_64.whl", hash = "sha256:162f4ca894ec3de1a6fd53589e511e06ecdc3ff646849b62a9da7489dee9ce95", size = 19157691, upload-time = "2025-10-22T03:46:43.518Z" },
{ url = "https://files.pythonhosted.org/packages/1c/a1/428ee29c6eaf09a6f6be56f836213f104618fb35ac6cc586ff0f477263eb/onnxruntime-1.23.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:45d127d6e1e9b99d1ebeae9bcd8f98617a812f53f46699eafeb976275744826b", size = 15226898, upload-time = "2025-10-22T03:46:30.039Z" },
{ url = "https://files.pythonhosted.org/packages/f2/2b/b57c8a2466a3126dbe0a792f56ad7290949b02f47b86216cd47d857e4b77/onnxruntime-1.23.2-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8bace4e0d46480fbeeb7bbe1ffe1f080e6663a42d1086ff95c1551f2d39e7872", size = 17382518, upload-time = "2025-10-22T03:47:05.407Z" },
{ url = "https://files.pythonhosted.org/packages/4a/93/aba75358133b3a941d736816dd392f687e7eab77215a6e429879080b76b6/onnxruntime-1.23.2-cp313-cp313-win_amd64.whl", hash = "sha256:1f9cc0a55349c584f083c1c076e611a7c35d5b867d5d6e6d6c823bf821978088", size = 13470276, upload-time = "2025-10-22T03:47:31.193Z" },
{ url = "https://files.pythonhosted.org/packages/7c/3d/6830fa61c69ca8e905f237001dbfc01689a4e4ab06147020a4518318881f/onnxruntime-1.23.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9d2385e774f46ac38f02b3a91a91e30263d41b2f1f4f26ae34805b2a9ddef466", size = 15229610, upload-time = "2025-10-22T03:46:32.239Z" },
{ url = "https://files.pythonhosted.org/packages/b6/ca/862b1e7a639460f0ca25fd5b6135fb42cf9deea86d398a92e44dfda2279d/onnxruntime-1.23.2-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e2b9233c4947907fd1818d0e581c049c41ccc39b2856cc942ff6d26317cee145", size = 17394184, upload-time = "2025-10-22T03:47:08.127Z" },
]
[[package]]
name = "packaging"
version = "25.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f", size = 165727, upload-time = "2025-04-19T11:48:59.673Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" },
]
[[package]]
name = "pathspec"
version = "0.12.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/ca/bc/f35b8446f4531a7cb215605d100cd88b7ac6f44ab3fc94870c120ab3adbf/pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712", size = 51043, upload-time = "2023-12-10T22:30:45Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191, upload-time = "2023-12-10T22:30:43.14Z" },
]
[[package]]
name = "pluggy"
version = "1.6.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/f9/e2/3e91f31a7d2b083fe6ef3fa267035b518369d9511ffab804f839851d2779/pluggy-1.6.0.tar.gz", hash = "sha256:7dcc130b76258d33b90f61b658791dede3486c3e6bfb003ee5c9bfb396dd22f3", size = 69412, upload-time = "2025-05-15T12:30:07.975Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl", hash = "sha256:e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746", size = 20538, upload-time = "2025-05-15T12:30:06.134Z" },
]
[[package]]
name = "protobuf"
version = "6.33.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/0a/03/a1440979a3f74f16cab3b75b0da1a1a7f922d56a8ddea96092391998edc0/protobuf-6.33.1.tar.gz", hash = "sha256:97f65757e8d09870de6fd973aeddb92f85435607235d20b2dfed93405d00c85b", size = 443432, upload-time = "2025-11-13T16:44:18.895Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/06/f1/446a9bbd2c60772ca36556bac8bfde40eceb28d9cc7838755bc41e001d8f/protobuf-6.33.1-cp310-abi3-win32.whl", hash = "sha256:f8d3fdbc966aaab1d05046d0240dd94d40f2a8c62856d41eaa141ff64a79de6b", size = 425593, upload-time = "2025-11-13T16:44:06.275Z" },
{ url = "https://files.pythonhosted.org/packages/a6/79/8780a378c650e3df849b73de8b13cf5412f521ca2ff9b78a45c247029440/protobuf-6.33.1-cp310-abi3-win_amd64.whl", hash = "sha256:923aa6d27a92bf44394f6abf7ea0500f38769d4b07f4be41cb52bd8b1123b9ed", size = 436883, upload-time = "2025-11-13T16:44:09.222Z" },
{ url = "https://files.pythonhosted.org/packages/cd/93/26213ff72b103ae55bb0d73e7fb91ea570ef407c3ab4fd2f1f27cac16044/protobuf-6.33.1-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:fe34575f2bdde76ac429ec7b570235bf0c788883e70aee90068e9981806f2490", size = 427522, upload-time = "2025-11-13T16:44:10.475Z" },
{ url = "https://files.pythonhosted.org/packages/c2/32/df4a35247923393aa6b887c3b3244a8c941c32a25681775f96e2b418f90e/protobuf-6.33.1-cp39-abi3-manylinux2014_aarch64.whl", hash = "sha256:f8adba2e44cde2d7618996b3fc02341f03f5bc3f2748be72dc7b063319276178", size = 324445, upload-time = "2025-11-13T16:44:11.869Z" },
{ url = "https://files.pythonhosted.org/packages/8e/d0/d796e419e2ec93d2f3fa44888861c3f88f722cde02b7c3488fcc6a166820/protobuf-6.33.1-cp39-abi3-manylinux2014_s390x.whl", hash = "sha256:0f4cf01222c0d959c2b399142deb526de420be8236f22c71356e2a544e153c53", size = 339161, upload-time = "2025-11-13T16:44:12.778Z" },
{ url = "https://files.pythonhosted.org/packages/1d/2a/3c5f05a4af06649547027d288747f68525755de692a26a7720dced3652c0/protobuf-6.33.1-cp39-abi3-manylinux2014_x86_64.whl", hash = "sha256:8fd7d5e0eb08cd5b87fd3df49bc193f5cfd778701f47e11d127d0afc6c39f1d1", size = 323171, upload-time = "2025-11-13T16:44:14.035Z" },
{ url = "https://files.pythonhosted.org/packages/08/b4/46310463b4f6ceef310f8348786f3cff181cea671578e3d9743ba61a459e/protobuf-6.33.1-py3-none-any.whl", hash = "sha256:d595a9fd694fdeb061a62fbe10eb039cc1e444df81ec9bb70c7fc59ebcb1eafa", size = 170477, upload-time = "2025-11-13T16:44:17.633Z" },
]
[[package]]
name = "pyreadline3"
version = "3.5.4"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/0f/49/4cea918a08f02817aabae639e3d0ac046fef9f9180518a3ad394e22da148/pyreadline3-3.5.4.tar.gz", hash = "sha256:8d57d53039a1c75adba8e50dd3d992b28143480816187ea5efbd5c78e6c885b7", size = 99839, upload-time = "2024-09-19T02:40:10.062Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/5a/dc/491b7661614ab97483abf2056be1deee4dc2490ecbf7bff9ab5cdbac86e1/pyreadline3-3.5.4-py3-none-any.whl", hash = "sha256:eaf8e6cc3c49bcccf145fc6067ba8643d1df34d604a1ec0eccbf7a18e6d3fae6", size = 83178, upload-time = "2024-09-19T02:40:08.598Z" },
]
[[package]]
name = "scipy"
version = "1.16.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "numpy" },
]
sdist = { url = "https://files.pythonhosted.org/packages/0a/ca/d8ace4f98322d01abcd52d381134344bf7b431eba7ed8b42bdea5a3c2ac9/scipy-1.16.3.tar.gz", hash = "sha256:01e87659402762f43bd2fee13370553a17ada367d42e7487800bf2916535aecb", size = 30597883, upload-time = "2025-10-28T17:38:54.068Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/72/f1/57e8327ab1508272029e27eeef34f2302ffc156b69e7e233e906c2a5c379/scipy-1.16.3-cp313-cp313-macosx_10_14_x86_64.whl", hash = "sha256:d2ec56337675e61b312179a1ad124f5f570c00f920cc75e1000025451b88241c", size = 36617856, upload-time = "2025-10-28T17:33:31.375Z" },
{ url = "https://files.pythonhosted.org/packages/44/13/7e63cfba8a7452eb756306aa2fd9b37a29a323b672b964b4fdeded9a3f21/scipy-1.16.3-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:16b8bc35a4cc24db80a0ec836a9286d0e31b2503cb2fd7ff7fb0e0374a97081d", size = 28874306, upload-time = "2025-10-28T17:33:36.516Z" },
{ url = "https://files.pythonhosted.org/packages/15/65/3a9400efd0228a176e6ec3454b1fa998fbbb5a8defa1672c3f65706987db/scipy-1.16.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:5803c5fadd29de0cf27fa08ccbfe7a9e5d741bf63e4ab1085437266f12460ff9", size = 20865371, upload-time = "2025-10-28T17:33:42.094Z" },
{ url = "https://files.pythonhosted.org/packages/33/d7/eda09adf009a9fb81827194d4dd02d2e4bc752cef16737cc4ef065234031/scipy-1.16.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:b81c27fc41954319a943d43b20e07c40bdcd3ff7cf013f4fb86286faefe546c4", size = 23524877, upload-time = "2025-10-28T17:33:48.483Z" },
{ url = "https://files.pythonhosted.org/packages/7d/6b/3f911e1ebc364cb81320223a3422aab7d26c9c7973109a9cd0f27c64c6c0/scipy-1.16.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0c3b4dd3d9b08dbce0f3440032c52e9e2ab9f96ade2d3943313dfe51a7056959", size = 33342103, upload-time = "2025-10-28T17:33:56.495Z" },
{ url = "https://files.pythonhosted.org/packages/21/f6/4bfb5695d8941e5c570a04d9fcd0d36bce7511b7d78e6e75c8f9791f82d0/scipy-1.16.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:7dc1360c06535ea6116a2220f760ae572db9f661aba2d88074fe30ec2aa1ff88", size = 35697297, upload-time = "2025-10-28T17:34:04.722Z" },
{ url = "https://files.pythonhosted.org/packages/04/e1/6496dadbc80d8d896ff72511ecfe2316b50313bfc3ebf07a3f580f08bd8c/scipy-1.16.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:663b8d66a8748051c3ee9c96465fb417509315b99c71550fda2591d7dd634234", size = 36021756, upload-time = "2025-10-28T17:34:13.482Z" },
{ url = "https://files.pythonhosted.org/packages/fe/bd/a8c7799e0136b987bda3e1b23d155bcb31aec68a4a472554df5f0937eef7/scipy-1.16.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:eab43fae33a0c39006a88096cd7b4f4ef545ea0447d250d5ac18202d40b6611d", size = 38696566, upload-time = "2025-10-28T17:34:22.384Z" },
{ url = "https://files.pythonhosted.org/packages/cd/01/1204382461fcbfeb05b6161b594f4007e78b6eba9b375382f79153172b4d/scipy-1.16.3-cp313-cp313-win_amd64.whl", hash = "sha256:062246acacbe9f8210de8e751b16fc37458213f124bef161a5a02c7a39284304", size = 38529877, upload-time = "2025-10-28T17:35:51.076Z" },
{ url = "https://files.pythonhosted.org/packages/7f/14/9d9fbcaa1260a94f4bb5b64ba9213ceb5d03cd88841fe9fd1ffd47a45b73/scipy-1.16.3-cp313-cp313-win_arm64.whl", hash = "sha256:50a3dbf286dbc7d84f176f9a1574c705f277cb6565069f88f60db9eafdbe3ee2", size = 25455366, upload-time = "2025-10-28T17:35:59.014Z" },
{ url = "https://files.pythonhosted.org/packages/e2/a3/9ec205bd49f42d45d77f1730dbad9ccf146244c1647605cf834b3a8c4f36/scipy-1.16.3-cp313-cp313t-macosx_10_14_x86_64.whl", hash = "sha256:fb4b29f4cf8cc5a8d628bc8d8e26d12d7278cd1f219f22698a378c3d67db5e4b", size = 37027931, upload-time = "2025-10-28T17:34:31.451Z" },
{ url = "https://files.pythonhosted.org/packages/25/06/ca9fd1f3a4589cbd825b1447e5db3a8ebb969c1eaf22c8579bd286f51b6d/scipy-1.16.3-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:8d09d72dc92742988b0e7750bddb8060b0c7079606c0d24a8cc8e9c9c11f9079", size = 29400081, upload-time = "2025-10-28T17:34:39.087Z" },
{ url = "https://files.pythonhosted.org/packages/6a/56/933e68210d92657d93fb0e381683bc0e53a965048d7358ff5fbf9e6a1b17/scipy-1.16.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:03192a35e661470197556de24e7cb1330d84b35b94ead65c46ad6f16f6b28f2a", size = 21391244, upload-time = "2025-10-28T17:34:45.234Z" },
{ url = "https://files.pythonhosted.org/packages/a8/7e/779845db03dc1418e215726329674b40576879b91814568757ff0014ad65/scipy-1.16.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:57d01cb6f85e34f0946b33caa66e892aae072b64b034183f3d87c4025802a119", size = 23929753, upload-time = "2025-10-28T17:34:51.793Z" },
{ url = "https://files.pythonhosted.org/packages/4c/4b/f756cf8161d5365dcdef9e5f460ab226c068211030a175d2fc7f3f41ca64/scipy-1.16.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:96491a6a54e995f00a28a3c3badfff58fd093bf26cd5fb34a2188c8c756a3a2c", size = 33496912, upload-time = "2025-10-28T17:34:59.8Z" },
{ url = "https://files.pythonhosted.org/packages/09/b5/222b1e49a58668f23839ca1542a6322bb095ab8d6590d4f71723869a6c2c/scipy-1.16.3-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:cd13e354df9938598af2be05822c323e97132d5e6306b83a3b4ee6724c6e522e", size = 35802371, upload-time = "2025-10-28T17:35:08.173Z" },
{ url = "https://files.pythonhosted.org/packages/c1/8d/5964ef68bb31829bde27611f8c9deeac13764589fe74a75390242b64ca44/scipy-1.16.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:63d3cdacb8a824a295191a723ee5e4ea7768ca5ca5f2838532d9f2e2b3ce2135", size = 36190477, upload-time = "2025-10-28T17:35:16.7Z" },
{ url = "https://files.pythonhosted.org/packages/ab/f2/b31d75cb9b5fa4dd39a0a931ee9b33e7f6f36f23be5ef560bf72e0f92f32/scipy-1.16.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:e7efa2681ea410b10dde31a52b18b0154d66f2485328830e45fdf183af5aefc6", size = 38796678, upload-time = "2025-10-28T17:35:26.354Z" },
{ url = "https://files.pythonhosted.org/packages/b4/1e/b3723d8ff64ab548c38d87055483714fefe6ee20e0189b62352b5e015bb1/scipy-1.16.3-cp313-cp313t-win_amd64.whl", hash = "sha256:2d1ae2cf0c350e7705168ff2429962a89ad90c2d49d1dd300686d8b2a5af22fc", size = 38640178, upload-time = "2025-10-28T17:35:35.304Z" },
{ url = "https://files.pythonhosted.org/packages/8e/f3/d854ff38789aca9b0cc23008d607ced9de4f7ab14fa1ca4329f86b3758ca/scipy-1.16.3-cp313-cp313t-win_arm64.whl", hash = "sha256:0c623a54f7b79dd88ef56da19bc2873afec9673a48f3b85b18e4d402bdd29a5a", size = 25803246, upload-time = "2025-10-28T17:35:42.155Z" },
{ url = "https://files.pythonhosted.org/packages/99/f6/99b10fd70f2d864c1e29a28bbcaa0c6340f9d8518396542d9ea3b4aaae15/scipy-1.16.3-cp314-cp314-macosx_10_14_x86_64.whl", hash = "sha256:875555ce62743e1d54f06cdf22c1e0bc47b91130ac40fe5d783b6dfa114beeb6", size = 36606469, upload-time = "2025-10-28T17:36:08.741Z" },
{ url = "https://files.pythonhosted.org/packages/4d/74/043b54f2319f48ea940dd025779fa28ee360e6b95acb7cd188fad4391c6b/scipy-1.16.3-cp314-cp314-macosx_12_0_arm64.whl", hash = "sha256:bb61878c18a470021fb515a843dc7a76961a8daceaaaa8bad1332f1bf4b54657", size = 28872043, upload-time = "2025-10-28T17:36:16.599Z" },
{ url = "https://files.pythonhosted.org/packages/4d/e1/24b7e50cc1c4ee6ffbcb1f27fe9f4c8b40e7911675f6d2d20955f41c6348/scipy-1.16.3-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:f2622206f5559784fa5c4b53a950c3c7c1cf3e84ca1b9c4b6c03f062f289ca26", size = 20862952, upload-time = "2025-10-28T17:36:22.966Z" },
{ url = "https://files.pythonhosted.org/packages/dd/3a/3e8c01a4d742b730df368e063787c6808597ccb38636ed821d10b39ca51b/scipy-1.16.3-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:7f68154688c515cdb541a31ef8eb66d8cd1050605be9dcd74199cbd22ac739bc", size = 23508512, upload-time = "2025-10-28T17:36:29.731Z" },
{ url = "https://files.pythonhosted.org/packages/1f/60/c45a12b98ad591536bfe5330cb3cfe1850d7570259303563b1721564d458/scipy-1.16.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8b3c820ddb80029fe9f43d61b81d8b488d3ef8ca010d15122b152db77dc94c22", size = 33413639, upload-time = "2025-10-28T17:36:37.982Z" },
{ url = "https://files.pythonhosted.org/packages/71/bc/35957d88645476307e4839712642896689df442f3e53b0fa016ecf8a3357/scipy-1.16.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d3837938ae715fc0fe3c39c0202de3a8853aff22ca66781ddc2ade7554b7e2cc", size = 35704729, upload-time = "2025-10-28T17:36:46.547Z" },
{ url = "https://files.pythonhosted.org/packages/3b/15/89105e659041b1ca11c386e9995aefacd513a78493656e57789f9d9eab61/scipy-1.16.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:aadd23f98f9cb069b3bd64ddc900c4d277778242e961751f77a8cb5c4b946fb0", size = 36086251, upload-time = "2025-10-28T17:36:55.161Z" },
{ url = "https://files.pythonhosted.org/packages/1a/87/c0ea673ac9c6cc50b3da2196d860273bc7389aa69b64efa8493bdd25b093/scipy-1.16.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:b7c5f1bda1354d6a19bc6af73a649f8285ca63ac6b52e64e658a5a11d4d69800", size = 38716681, upload-time = "2025-10-28T17:37:04.1Z" },
{ url = "https://files.pythonhosted.org/packages/91/06/837893227b043fb9b0d13e4bd7586982d8136cb249ffb3492930dab905b8/scipy-1.16.3-cp314-cp314-win_amd64.whl", hash = "sha256:e5d42a9472e7579e473879a1990327830493a7047506d58d73fc429b84c1d49d", size = 39358423, upload-time = "2025-10-28T17:38:20.005Z" },
{ url = "https://files.pythonhosted.org/packages/95/03/28bce0355e4d34a7c034727505a02d19548549e190bedd13a721e35380b7/scipy-1.16.3-cp314-cp314-win_arm64.whl", hash = "sha256:6020470b9d00245926f2d5bb93b119ca0340f0d564eb6fbaad843eaebf9d690f", size = 26135027, upload-time = "2025-10-28T17:38:24.966Z" },
{ url = "https://files.pythonhosted.org/packages/b2/6f/69f1e2b682efe9de8fe9f91040f0cd32f13cfccba690512ba4c582b0bc29/scipy-1.16.3-cp314-cp314t-macosx_10_14_x86_64.whl", hash = "sha256:e1d27cbcb4602680a49d787d90664fa4974063ac9d4134813332a8c53dbe667c", size = 37028379, upload-time = "2025-10-28T17:37:14.061Z" },
{ url = "https://files.pythonhosted.org/packages/7c/2d/e826f31624a5ebbab1cd93d30fd74349914753076ed0593e1d56a98c4fb4/scipy-1.16.3-cp314-cp314t-macosx_12_0_arm64.whl", hash = "sha256:9b9c9c07b6d56a35777a1b4cc8966118fb16cfd8daf6743867d17d36cfad2d40", size = 29400052, upload-time = "2025-10-28T17:37:21.709Z" },
{ url = "https://files.pythonhosted.org/packages/69/27/d24feb80155f41fd1f156bf144e7e049b4e2b9dd06261a242905e3bc7a03/scipy-1.16.3-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:3a4c460301fb2cffb7f88528f30b3127742cff583603aa7dc964a52c463b385d", size = 21391183, upload-time = "2025-10-28T17:37:29.559Z" },
{ url = "https://files.pythonhosted.org/packages/f8/d3/1b229e433074c5738a24277eca520a2319aac7465eea7310ea6ae0e98ae2/scipy-1.16.3-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:f667a4542cc8917af1db06366d3f78a5c8e83badd56409f94d1eac8d8d9133fa", size = 23930174, upload-time = "2025-10-28T17:37:36.306Z" },
{ url = "https://files.pythonhosted.org/packages/16/9d/d9e148b0ec680c0f042581a2be79a28a7ab66c0c4946697f9e7553ead337/scipy-1.16.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:f379b54b77a597aa7ee5e697df0d66903e41b9c85a6dd7946159e356319158e8", size = 33497852, upload-time = "2025-10-28T17:37:42.228Z" },
{ url = "https://files.pythonhosted.org/packages/2f/22/4e5f7561e4f98b7bea63cf3fd7934bff1e3182e9f1626b089a679914d5c8/scipy-1.16.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4aff59800a3b7f786b70bfd6ab551001cb553244988d7d6b8299cb1ea653b353", size = 35798595, upload-time = "2025-10-28T17:37:48.102Z" },
{ url = "https://files.pythonhosted.org/packages/83/42/6644d714c179429fc7196857866f219fef25238319b650bb32dde7bf7a48/scipy-1.16.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:da7763f55885045036fabcebd80144b757d3db06ab0861415d1c3b7c69042146", size = 36186269, upload-time = "2025-10-28T17:37:53.72Z" },
{ url = "https://files.pythonhosted.org/packages/ac/70/64b4d7ca92f9cf2e6fc6aaa2eecf80bb9b6b985043a9583f32f8177ea122/scipy-1.16.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:ffa6eea95283b2b8079b821dc11f50a17d0571c92b43e2b5b12764dc5f9b285d", size = 38802779, upload-time = "2025-10-28T17:37:59.393Z" },
{ url = "https://files.pythonhosted.org/packages/61/82/8d0e39f62764cce5ffd5284131e109f07cf8955aef9ab8ed4e3aa5e30539/scipy-1.16.3-cp314-cp314t-win_amd64.whl", hash = "sha256:d9f48cafc7ce94cf9b15c6bffdc443a81a27bf7075cf2dcd5c8b40f85d10c4e7", size = 39471128, upload-time = "2025-10-28T17:38:05.259Z" },
{ url = "https://files.pythonhosted.org/packages/64/47/a494741db7280eae6dc033510c319e34d42dd41b7ac0c7ead39354d1a2b5/scipy-1.16.3-cp314-cp314t-win_arm64.whl", hash = "sha256:21d9d6b197227a12dcbf9633320a4e34c6b0e51c57268df255a0942983bac562", size = 26464127, upload-time = "2025-10-28T17:38:11.34Z" },
]
[[package]]
name = "sentencepiece"
version = "0.2.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/15/15/2e7a025fc62d764b151ae6d0f2a92f8081755ebe8d4a64099accc6f77ba6/sentencepiece-0.2.1.tar.gz", hash = "sha256:8138cec27c2f2282f4a34d9a016e3374cd40e5c6e9cb335063db66a0a3b71fad", size = 3228515, upload-time = "2025-08-12T07:00:51.718Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/ba/4a/85fbe1706d4d04a7e826b53f327c4b80f849cf1c7b7c5e31a20a97d8f28b/sentencepiece-0.2.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dcd8161eee7b41aae57ded06272905dbd680a0a04b91edd0f64790c796b2f706", size = 1943150, upload-time = "2025-08-12T06:59:53.588Z" },
{ url = "https://files.pythonhosted.org/packages/c2/83/4cfb393e287509fc2155480b9d184706ef8d9fa8cbf5505d02a5792bf220/sentencepiece-0.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:c6c8f42949f419ff8c7e9960dbadcfbc982d7b5efc2f6748210d3dd53a7de062", size = 1325651, upload-time = "2025-08-12T06:59:55.073Z" },
{ url = "https://files.pythonhosted.org/packages/8d/de/5a007fb53b1ab0aafc69d11a5a3dd72a289d5a3e78dcf2c3a3d9b14ffe93/sentencepiece-0.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:097f3394e99456e9e4efba1737c3749d7e23563dd1588ce71a3d007f25475fff", size = 1253641, upload-time = "2025-08-12T06:59:56.562Z" },
{ url = "https://files.pythonhosted.org/packages/2c/d2/f552be5928105588f4f4d66ee37dd4c61460d8097e62d0e2e0eec41bc61d/sentencepiece-0.2.1-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d7b670879c370d350557edabadbad1f6561a9e6968126e6debca4029e5547820", size = 1316271, upload-time = "2025-08-12T06:59:58.109Z" },
{ url = "https://files.pythonhosted.org/packages/96/df/0cfe748ace5485be740fed9476dee7877f109da32ed0d280312c94ec259f/sentencepiece-0.2.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c7f0fd2f2693309e6628aeeb2e2faf6edd221134dfccac3308ca0de01f8dab47", size = 1387882, upload-time = "2025-08-12T07:00:00.701Z" },
{ url = "https://files.pythonhosted.org/packages/ac/dd/f7774d42a881ced8e1739f393ab1e82ece39fc9abd4779e28050c2e975b5/sentencepiece-0.2.1-cp313-cp313-win32.whl", hash = "sha256:92b3816aa2339355fda2c8c4e021a5de92180b00aaccaf5e2808972e77a4b22f", size = 999541, upload-time = "2025-08-12T07:00:02.709Z" },
{ url = "https://files.pythonhosted.org/packages/dd/e9/932b9eae6fd7019548321eee1ab8d5e3b3d1294df9d9a0c9ac517c7b636d/sentencepiece-0.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:10ed3dab2044c47f7a2e7b4969b0c430420cdd45735d78c8f853191fa0e3148b", size = 1054669, upload-time = "2025-08-12T07:00:04.915Z" },
{ url = "https://files.pythonhosted.org/packages/c9/3a/76488a00ea7d6931689cda28726a1447d66bf1a4837943489314593d5596/sentencepiece-0.2.1-cp313-cp313-win_arm64.whl", hash = "sha256:ac650534e2251083c5f75dde4ff28896ce7c8904133dc8fef42780f4d5588fcd", size = 1033922, upload-time = "2025-08-12T07:00:06.496Z" },
{ url = "https://files.pythonhosted.org/packages/4a/b6/08fe2ce819e02ccb0296f4843e3f195764ce9829cbda61b7513f29b95718/sentencepiece-0.2.1-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:8dd4b477a7b069648d19363aad0cab9bad2f4e83b2d179be668efa672500dc94", size = 1946052, upload-time = "2025-08-12T07:00:08.136Z" },
{ url = "https://files.pythonhosted.org/packages/ab/d9/1ea0e740591ff4c6fc2b6eb1d7510d02f3fb885093f19b2f3abd1363b402/sentencepiece-0.2.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0c0f672da370cc490e4c59d89e12289778310a0e71d176c541e4834759e1ae07", size = 1327408, upload-time = "2025-08-12T07:00:09.572Z" },
{ url = "https://files.pythonhosted.org/packages/99/7e/1fb26e8a21613f6200e1ab88824d5d203714162cf2883248b517deb500b7/sentencepiece-0.2.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:ad8493bea8432dae8d6830365352350f3b4144415a1d09c4c8cb8d30cf3b6c3c", size = 1254857, upload-time = "2025-08-12T07:00:11.021Z" },
{ url = "https://files.pythonhosted.org/packages/bc/85/c72fd1f3c7a6010544d6ae07f8ddb38b5e2a7e33bd4318f87266c0bbafbf/sentencepiece-0.2.1-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b81a24733726e3678d2db63619acc5a8dccd074f7aa7a54ecd5ca33ca6d2d596", size = 1315722, upload-time = "2025-08-12T07:00:12.989Z" },
{ url = "https://files.pythonhosted.org/packages/4a/e8/661e5bd82a8aa641fd6c1020bd0e890ef73230a2b7215ddf9c8cd8e941c2/sentencepiece-0.2.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0a81799d0a68d618e89063fb423c3001a034c893069135ffe51fee439ae474d6", size = 1387452, upload-time = "2025-08-12T07:00:15.088Z" },
{ url = "https://files.pythonhosted.org/packages/99/5e/ae66c361023a470afcbc1fbb8da722c72ea678a2fcd9a18f1a12598c7501/sentencepiece-0.2.1-cp313-cp313t-win32.whl", hash = "sha256:89a3ea015517c42c0341d0d962f3e6aaf2cf10d71b1932d475c44ba48d00aa2b", size = 1002501, upload-time = "2025-08-12T07:00:16.966Z" },
{ url = "https://files.pythonhosted.org/packages/c1/03/d332828c4ff764e16c1b56c2c8f9a33488bbe796b53fb6b9c4205ddbf167/sentencepiece-0.2.1-cp313-cp313t-win_amd64.whl", hash = "sha256:33f068c9382dc2e7c228eedfd8163b52baa86bb92f50d0488bf2b7da7032e484", size = 1057555, upload-time = "2025-08-12T07:00:18.573Z" },
{ url = "https://files.pythonhosted.org/packages/88/14/5aee0bf0864df9bd82bd59e7711362908e4935e3f9cdc1f57246b5d5c9b9/sentencepiece-0.2.1-cp313-cp313t-win_arm64.whl", hash = "sha256:b3616ad246f360e52c85781e47682d31abfb6554c779e42b65333d4b5f44ecc0", size = 1036042, upload-time = "2025-08-12T07:00:20.209Z" },
{ url = "https://files.pythonhosted.org/packages/24/9c/89eb8b2052f720a612478baf11c8227dcf1dc28cd4ea4c0c19506b5af2a2/sentencepiece-0.2.1-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:5d0350b686c320068702116276cfb26c066dc7e65cfef173980b11bb4d606719", size = 1943147, upload-time = "2025-08-12T07:00:21.809Z" },
{ url = "https://files.pythonhosted.org/packages/82/0b/a1432bc87f97c2ace36386ca23e8bd3b91fb40581b5e6148d24b24186419/sentencepiece-0.2.1-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:c7f54a31cde6fa5cb030370566f68152a742f433f8d2be458463d06c208aef33", size = 1325624, upload-time = "2025-08-12T07:00:23.289Z" },
{ url = "https://files.pythonhosted.org/packages/ea/99/bbe054ebb5a5039457c590e0a4156ed073fb0fe9ce4f7523404dd5b37463/sentencepiece-0.2.1-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c83b85ab2d6576607f31df77ff86f28182be4a8de6d175d2c33ca609925f5da1", size = 1253670, upload-time = "2025-08-12T07:00:24.69Z" },
{ url = "https://files.pythonhosted.org/packages/19/ad/d5c7075f701bd97971d7c2ac2904f227566f51ef0838dfbdfdccb58cd212/sentencepiece-0.2.1-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1855f57db07b51fb51ed6c9c452f570624d2b169b36f0f79ef71a6e6c618cd8b", size = 1316247, upload-time = "2025-08-12T07:00:26.435Z" },
{ url = "https://files.pythonhosted.org/packages/fb/03/35fbe5f3d9a7435eebd0b473e09584bd3cc354ce118b960445b060d33781/sentencepiece-0.2.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:01e6912125cb45d3792f530a4d38f8e21bf884d6b4d4ade1b2de5cf7a8d2a52b", size = 1387894, upload-time = "2025-08-12T07:00:28.339Z" },
{ url = "https://files.pythonhosted.org/packages/dc/aa/956ef729aafb6c8f9c443104c9636489093bb5c61d6b90fc27aa1a865574/sentencepiece-0.2.1-cp314-cp314-win32.whl", hash = "sha256:c415c9de1447e0a74ae3fdb2e52f967cb544113a3a5ce3a194df185cbc1f962f", size = 1096698, upload-time = "2025-08-12T07:00:29.764Z" },
{ url = "https://files.pythonhosted.org/packages/b8/cb/fe400d8836952cc535c81a0ce47dc6875160e5fedb71d2d9ff0e9894c2a6/sentencepiece-0.2.1-cp314-cp314-win_amd64.whl", hash = "sha256:881b2e44b14fc19feade3cbed314be37de639fc415375cefaa5bc81a4be137fd", size = 1155115, upload-time = "2025-08-12T07:00:32.865Z" },
{ url = "https://files.pythonhosted.org/packages/32/89/047921cf70f36c7b6b6390876b2399b3633ab73b8d0cb857e5a964238941/sentencepiece-0.2.1-cp314-cp314-win_arm64.whl", hash = "sha256:2005242a16d2dc3ac5fe18aa7667549134d37854823df4c4db244752453b78a8", size = 1133890, upload-time = "2025-08-12T07:00:34.763Z" },
{ url = "https://files.pythonhosted.org/packages/a1/11/5b414b9fae6255b5fb1e22e2ed3dc3a72d3a694e5703910e640ac78346bb/sentencepiece-0.2.1-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:a19adcec27c524cb7069a1c741060add95f942d1cbf7ad0d104dffa0a7d28a2b", size = 1946081, upload-time = "2025-08-12T07:00:36.97Z" },
{ url = "https://files.pythonhosted.org/packages/77/eb/7a5682bb25824db8545f8e5662e7f3e32d72a508fdce086029d89695106b/sentencepiece-0.2.1-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:e37e4b4c4a11662b5db521def4e44d4d30ae69a1743241412a93ae40fdcab4bb", size = 1327406, upload-time = "2025-08-12T07:00:38.669Z" },
{ url = "https://files.pythonhosted.org/packages/03/b0/811dae8fb9f2784e138785d481469788f2e0d0c109c5737372454415f55f/sentencepiece-0.2.1-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:477c81505db072b3ab627e7eab972ea1025331bd3a92bacbf798df2b75ea86ec", size = 1254846, upload-time = "2025-08-12T07:00:40.611Z" },
{ url = "https://files.pythonhosted.org/packages/ef/23/195b2e7ec85ebb6a547969f60b723c7aca5a75800ece6cc3f41da872d14e/sentencepiece-0.2.1-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:010f025a544ef770bb395091d57cb94deb9652d8972e0d09f71d85d5a0816c8c", size = 1315721, upload-time = "2025-08-12T07:00:42.914Z" },
{ url = "https://files.pythonhosted.org/packages/7e/aa/553dbe4178b5f23eb28e59393dddd64186178b56b81d9b8d5c3ff1c28395/sentencepiece-0.2.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:733e59ff1794d26db706cd41fc2d7ca5f6c64a820709cb801dc0ea31780d64ab", size = 1387458, upload-time = "2025-08-12T07:00:44.56Z" },
{ url = "https://files.pythonhosted.org/packages/66/7c/08ff0012507297a4dd74a5420fdc0eb9e3e80f4e88cab1538d7f28db303d/sentencepiece-0.2.1-cp314-cp314t-win32.whl", hash = "sha256:d3233770f78e637dc8b1fda2cd7c3b99ec77e7505041934188a4e7fe751de3b0", size = 1099765, upload-time = "2025-08-12T07:00:46.058Z" },
{ url = "https://files.pythonhosted.org/packages/91/d5/2a69e1ce15881beb9ddfc7e3f998322f5cedcd5e4d244cb74dade9441663/sentencepiece-0.2.1-cp314-cp314t-win_amd64.whl", hash = "sha256:5e4366c97b68218fd30ea72d70c525e6e78a6c0a88650f57ac4c43c63b234a9d", size = 1157807, upload-time = "2025-08-12T07:00:47.673Z" },
{ url = "https://files.pythonhosted.org/packages/f3/16/54f611fcfc2d1c46cbe3ec4169780b2cfa7cf63708ef2b71611136db7513/sentencepiece-0.2.1-cp314-cp314t-win_arm64.whl", hash = "sha256:105e36e75cbac1292642045458e8da677b2342dcd33df503e640f0b457cb6751", size = 1136264, upload-time = "2025-08-12T07:00:49.485Z" },
]
[[package]]
name = "setuptools"
version = "80.9.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/18/5d/3bf57dcd21979b887f014ea83c24ae194cfcd12b9e0fda66b957c69d1fca/setuptools-80.9.0.tar.gz", hash = "sha256:f36b47402ecde768dbfafc46e8e4207b4360c654f1f3bb84475f0a28628fb19c", size = 1319958, upload-time = "2025-05-27T00:56:51.443Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922", size = 1201486, upload-time = "2025-05-27T00:56:49.664Z" },
]
[[package]]
name = "sympy"
version = "1.14.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "mpmath" },
]
sdist = { url = "https://files.pythonhosted.org/packages/83/d3/803453b36afefb7c2bb238361cd4ae6125a569b4db67cd9e79846ba2d68c/sympy-1.14.0.tar.gz", hash = "sha256:d3d3fe8df1e5a0b42f0e7bdf50541697dbe7d23746e894990c030e2b05e72517", size = 7793921, upload-time = "2025-04-27T18:05:01.611Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl", hash = "sha256:e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5", size = 6299353, upload-time = "2025-04-27T18:04:59.103Z" },
]
[[package]]
name = "torch"
version = "2.8.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "filelock" },
{ name = "fsspec" },
{ name = "jinja2" },
{ name = "networkx" },
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cufile-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cusparselt-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "setuptools" },
{ name = "sympy" },
{ name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "typing-extensions" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/10/4e/469ced5a0603245d6a19a556e9053300033f9c5baccf43a3d25ba73e189e/torch-2.8.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:2b2f96814e0345f5a5aed9bf9734efa913678ed19caf6dc2cddb7930672d6128", size = 101936856, upload-time = "2025-08-06T14:54:01.526Z" },
{ url = "https://files.pythonhosted.org/packages/16/82/3948e54c01b2109238357c6f86242e6ecbf0c63a1af46906772902f82057/torch-2.8.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:65616ca8ec6f43245e1f5f296603e33923f4c30f93d65e103d9e50c25b35150b", size = 887922844, upload-time = "2025-08-06T14:55:50.78Z" },
{ url = "https://files.pythonhosted.org/packages/e3/54/941ea0a860f2717d86a811adf0c2cd01b3983bdd460d0803053c4e0b8649/torch-2.8.0-cp313-cp313-win_amd64.whl", hash = "sha256:659df54119ae03e83a800addc125856effda88b016dfc54d9f65215c3975be16", size = 241330968, upload-time = "2025-08-06T14:54:45.293Z" },
{ url = "https://files.pythonhosted.org/packages/de/69/8b7b13bba430f5e21d77708b616f767683629fc4f8037564a177d20f90ed/torch-2.8.0-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:1a62a1ec4b0498930e2543535cf70b1bef8c777713de7ceb84cd79115f553767", size = 73915128, upload-time = "2025-08-06T14:54:34.769Z" },
{ url = "https://files.pythonhosted.org/packages/15/0e/8a800e093b7f7430dbaefa80075aee9158ec22e4c4fc3c1a66e4fb96cb4f/torch-2.8.0-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:83c13411a26fac3d101fe8035a6b0476ae606deb8688e904e796a3534c197def", size = 102020139, upload-time = "2025-08-06T14:54:39.047Z" },
{ url = "https://files.pythonhosted.org/packages/4a/15/5e488ca0bc6162c86a33b58642bc577c84ded17c7b72d97e49b5833e2d73/torch-2.8.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:8f0a9d617a66509ded240add3754e462430a6c1fc5589f86c17b433dd808f97a", size = 887990692, upload-time = "2025-08-06T14:56:18.286Z" },
{ url = "https://files.pythonhosted.org/packages/b4/a8/6a04e4b54472fc5dba7ca2341ab219e529f3c07b6941059fbf18dccac31f/torch-2.8.0-cp313-cp313t-win_amd64.whl", hash = "sha256:a7242b86f42be98ac674b88a4988643b9bc6145437ec8f048fea23f72feb5eca", size = 241603453, upload-time = "2025-08-06T14:55:22.945Z" },
{ url = "https://files.pythonhosted.org/packages/04/6e/650bb7f28f771af0cb791b02348db8b7f5f64f40f6829ee82aa6ce99aabe/torch-2.8.0-cp313-none-macosx_11_0_arm64.whl", hash = "sha256:7b677e17f5a3e69fdef7eb3b9da72622f8d322692930297e4ccb52fefc6c8211", size = 73632395, upload-time = "2025-08-06T14:55:28.645Z" },
]
[[package]]
name = "torchaudio"
version = "2.8.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "torch" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/3b/ea/2a68259c4dbb5fe44ebfdcfa40b115010d8c677221a7ef0f5577f3c4f5f1/torchaudio-2.8.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f851d32e94ca05e470f0c60e25726ec1e0eb71cb2ca5a0206b7fd03272ccc3c8", size = 1857045, upload-time = "2025-08-06T14:58:51.984Z" },
{ url = "https://files.pythonhosted.org/packages/0d/a3/1c79a8ef29fe403b83bdfc033db852bc2a888b80c406325e5c6fb37a7f2d/torchaudio-2.8.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:09535a9b727c0793cd07c1ace99f3f353626281bcc3e30c2f2314e3ebc9d3f96", size = 1692755, upload-time = "2025-08-06T14:58:50.868Z" },
{ url = "https://files.pythonhosted.org/packages/49/df/61941198e9ac6bcebfdd57e1836e4f3c23409308e3d8d7458f0198a6a366/torchaudio-2.8.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:d2a85b124494736241884372fe1c6dd8c15e9bc1931bd325838c5c00238c7378", size = 4013897, upload-time = "2025-08-06T14:59:01.66Z" },
{ url = "https://files.pythonhosted.org/packages/c3/ab/7175d35a4bbc4a465a9f1388571842f16eb6dec5069d7ea9c8c2d7b5b401/torchaudio-2.8.0-cp313-cp313-win_amd64.whl", hash = "sha256:c1b5139c840367a7855a062a06688a416619f6fd2ca46d9b9299b49a7d133dfd", size = 2500085, upload-time = "2025-08-06T14:58:44.95Z" },
{ url = "https://files.pythonhosted.org/packages/34/1a/69b9f8349d9d57953d5e7e445075cbf74000173fb5f5d5d9e9d59415fc63/torchaudio-2.8.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:68df9c9068984edff8065c2b6656725e6114fe89281b0cf122c7505305fc98a4", size = 1935600, upload-time = "2025-08-06T14:58:46.051Z" },
{ url = "https://files.pythonhosted.org/packages/71/76/40fec21b65bccfdc5c8cdb9d511033ab07a7ad4b05f0a5b07f85c68279fc/torchaudio-2.8.0-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:1951f10ed092f2dda57634f6a3950ef21c9d9352551aa84a9fccd51bbda18095", size = 1704199, upload-time = "2025-08-06T14:58:43.594Z" },
{ url = "https://files.pythonhosted.org/packages/8e/53/95c3363413c2f2009f805144160b093a385f641224465fbcd717449c71fb/torchaudio-2.8.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:4f7d97494698d98854129349b12061e8c3398d33bd84c929fa9aed5fd1389f73", size = 4020596, upload-time = "2025-08-06T14:59:03.031Z" },
{ url = "https://files.pythonhosted.org/packages/52/27/7fc2d7435af044ffbe0b9b8e98d99eac096d43f128a5cde23c04825d5dcf/torchaudio-2.8.0-cp313-cp313t-win_amd64.whl", hash = "sha256:d4a715d09ac28c920d031ee1e60ecbc91e8a5079ad8c61c0277e658436c821a6", size = 2549553, upload-time = "2025-08-06T14:59:00.019Z" },
]
[[package]]
name = "triton"
version = "3.4.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "setuptools" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/30/7b/0a685684ed5322d2af0bddefed7906674f67974aa88b0fae6e82e3b766f6/triton-3.4.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:00be2964616f4c619193cb0d1b29a99bd4b001d7dc333816073f92cf2a8ccdeb", size = 155569223, upload-time = "2025-07-30T19:58:44.017Z" },
{ url = "https://files.pythonhosted.org/packages/20/63/8cb444ad5cdb25d999b7d647abac25af0ee37d292afc009940c05b82dda0/triton-3.4.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7936b18a3499ed62059414d7df563e6c163c5e16c3773678a3ee3d417865035d", size = 155659780, upload-time = "2025-07-30T19:58:51.171Z" },
]
[[package]]
name = "trove-classifiers"
version = "2025.12.1.14"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/80/e1/000add3b3e0725ce7ee0ea6ea4543f1e1d9519742f3b2320de41eeefa7c7/trove_classifiers-2025.12.1.14.tar.gz", hash = "sha256:a74f0400524fc83620a9be74a07074b5cbe7594fd4d97fd4c2bfde625fdc1633", size = 16985, upload-time = "2025-12-01T14:47:11.456Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/4f/7e/bc19996fa86cad8801e8ffe6f1bba5836ca0160df76d0410d27432193712/trove_classifiers-2025.12.1.14-py3-none-any.whl", hash = "sha256:a8206978ede95937b9959c3aff3eb258bbf7b07dff391ddd4ea7e61f316635ab", size = 14184, upload-time = "2025-12-01T14:47:10.113Z" },
]
[[package]]
name = "typing-extensions"
version = "4.15.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/72/94/1a15dd82efb362ac84269196e94cf00f187f7ed21c242792a923cdb1c61f/typing_extensions-4.15.0.tar.gz", hash = "sha256:0cea48d173cc12fa28ecabc3b837ea3cf6f38c6d1136f85cbaaf598984861466", size = 109391, upload-time = "2025-08-25T13:49:26.313Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614, upload-time = "2025-08-25T13:49:24.86Z" },
]